AQUATIC INVERTEBRATE ASSEMBLAGES AND BIOLOGICAL ASSESSMENT OF STREAM SITES IN THE CITY OF BELLEVUE, WASHINGTON: 2016

Report to the City of Bellevue, Washington Utilities Department Kit Paulsen, Project Manager

Prepared by

Billie Kerans and Wease Bollman Rhithron Associates, Inc. Missoula, Montana

January 2017

Table of Contents

INTRODUCTION
METHODS
Sampling3
Sample processing3
Quality assurance (QA)/ quality control (QC) procedures4
Data analysis5
RESULTS7
Quality control procedures7
Data analysis7
Characteristics of the aquatic invertebrate assemblages12
Coal Creek Above I-405 Weirs12
Coal Creek Below Parkway13
Lewis Creek Ravine14
Newport Tributary15
Newport Tributary Above Pedestrian Bridge16
Yarrow East Tributary17
DISCUSSION
LITERATURE CITED
APPENDIX

INTRODUCTION

This report summarizes and interprets aquatic macroinvertebrate data collected in August 2016 at stream sites in the City of Bellevue, King County, Washington. Similar to projects completed in prior years, the objectives of this study include using the invertebrate biota to detect impairment to biological health, using 2 assessment tools: a multimetric index (B-IBI – the Benthic Index of Biological Integrity) and a predictive model (RIVPACS – the River InVertebrate Prediction and Classification System). The 10 B-IBI metrics and index scores were calibrated for streams of the Pacific Northwest and obtained from the Puget Sound Stream Benthos website (pugetsoundstreambenthos.org), using the revised version based on continuous scoring (0-100). The RIVPACS model was developed by the Washington Department of Ecology (WDOE). RIVPACS compares the occurrence of taxa at a site with the taxa expected at a similar site with minimal human influence, and yields a score that summarizes the comparison. These assessment tools provide a summary score of biological condition, and the B-IBI can be translated into biological health condition classes (i.e., excellent, good, fair, poor, and very poor) based on ranking criteria used by King County and other agencies and organizations in the Puget Sound region.

Site-specific narrative summaries provide additional information on the probable stressors that may account for diminished stream health. These summaries are based on the demonstrated and expected associations between patterns of response of B-IBI metrics and other metric expressions, as well as the taxonomic and functional composition of the benthic assemblages. The analysis examines common stressors associated with urbanization: water quality degradation (including metals contamination), changes to natural thermal regimes, loss and impairment of instream habitats due to sediment deposition and altered flow regimes, and disturbance to reach-scale and instream habitat features such as stream banks, channel morphology, and riparian zone integrity.

METHODS

Sampling

The City of Bellevue provided oversight for the collection of 7 aquatic invertebrate samples from 6 sites. Two replicate samples were collected at Lewis Creek Ravine. Single collections were made at the other 5 sites. Samples were processed and invertebrates identified by Rhithron Associates, Missoula, Montana.

Sample processing

In the laboratory, standard sorting protocols were applied to achieve representative subsamples of aquatic organisms. Caton sub-sampling devices (Caton 1991), divided into 30 grids, each approximately 5 cm by 6 cm were used. Each individual sample was thoroughly mixed in its

jar(s), poured out and evenly spread into the Caton tray, and individual grids were randomly selected. The contents of each grid were examined under stereoscopic microscopes using 10x30x magnification. A minimum of 500 organisms were sorted from the substrate: all aquatic invertebrates from each selected grid were sorted, and placed in ethanol for subsequent identification. The final selected grid was completely sorted of all organisms. All unsorted sample fractions were retained and stored at the Rhithron laboratory.

Organisms were individually examined by certified taxonomists, using 10x - 80x stereoscopic dissecting scopes (Leica S8E and S6E) and identified to target taxonomic levels consistent with protocols for Puget Sound Lowlands streams, using appropriate published taxonomic references and keys. Midges (Diptera: Chironomidae) were identified to genus/species group/species and Oligochaetes were identified to genus/species. Identification, counts, life stages, and information about the condition of specimens were recorded on bench sheets. To obtain accuracy in richness measures, organisms that could not be identified to the target level specified were designated as "not unique" if other specimens from the same group could be taken to target levels. Organisms designated as "unique" were those that could be definitively distinguished from other organisms in the sample. Identified organisms were preserved in 95% ethanol in labeled vials, and archived at the Rhithron laboratory.

Midges and worms were carefully morphotyped using 10x – 80x stereoscopic dissecting microscopes (Leica S8E and S6E) and representative specimens were slide mounted and examined at 200x – 1000x magnification using an Olympus BX 51 compound microscope with Hoffman contrast. Slide mounted organisms were archived at the Rhithron laboratory.

Quality assurance (QA)/ quality control (QC) procedures

Quality control procedures for initial sample processing and subsampling involved checking sorting efficiency (*SE*). An independent observer microscopically re-examined 100% of the sorted substrate from a randomly selected sample, representing 14.3% of total samples. All organisms that were missed were counted and this number was added to the total number obtained in the original sort. Sorting efficiency was evaluated by applying the following calculation:

$SE = [n_1/(n_1 + n_2)] X 100$

where: SE is the sorting efficiency, expressed as a percentage, n_1 is the total number of specimens in the first sort, and n_2 is the total number of specimens in the second sort. Target efficiency for these samples was 90%.

Quality assurance procedures for taxonomic determinations of invertebrates involved checking accuracy, precision and enumeration. One sample was randomly selected and all organisms re-identified and counted by an independent taxonomist. Taxa lists and enumerations were compared by calculating the Percent Taxonomic Difference (PTD), the Percent Difference in

Enumeration (PDE), and a Bray-Curtis similarity statistic (Bray and Curtis 1957) for each selected sample. Internal data quality targets for these parameters are: PTD \leq 5%, PDE \leq 5%, and Bray-Curtis similarity X 100 \geq 95%. Routinely, discrepancies between the original identifications and the QC identifications are discussed among the taxonomists, and necessary rectifications to the data are made. Discrepancies that cannot be rectified by discussions are routinely sent out to taxonomic specialists for identification. However, taxonomic certainty for identifications in this project was high, and no external verifications were necessary.

Data analysis

B-IBI metrics and scores were obtained from the Puget Sound Stream Benthos (PSSB) website, using the updated version (accessed in December 2016 and January 2017), scaled continuously between 0 and 100. RIVPACS scores were obtained by entering data into a web-based application maintained by the Utah State University's Western Center for Monitoring and Assessment of Freshwater Ecosystems. Related applications on this website produce a taxa list from each sample by a random re-sampling routine that standardizes sample sizes. Some taxa are excluded from the analysis. Output from the RIVPACS applications provide a RIVPACS score for each replicate.

Metric and taxonomic signals for water quality (including the presence of possible metals contamination), thermal condition, sediment deposition and habitat indicators were investigated and described in narrative interpretations. These interpretations of the taxonomic and functional composition of invertebrate assemblages are based on demonstrated associations between assemblage components and habitat and water quality variables gleaned from the published literature, the writer's own research and professional judgment, and those of other expert sources (e.g. Wisseman 1998). Often canonical procedures are used for stressor identification; however, the substantial data required for such procedures (e.g., surveys of habitat, historical and current data related to water quality, land use, point and non-point source influences, soils, hydrology, geology) were not readily available for this study. Instead, attributes of invertebrate taxa that are well-substantiated in diverse literature, published and unpublished research, and that are generally accepted by regional aquatic ecologists, are combined into descriptions of probable water quality and instream and reach-scale habitat conditions. The approach to this analysis uses some assemblage attributes that are interpreted as evidence of water quality and other attributes that are interpreted as evidence of habitat integrity. To arrive at impairment hypotheses, attributes are considered individually, so information is maximized by not relying on a single cumulative score, which may mask stress on the biota. When replicate samples were collected, data were combined for the narrative analyses.

Mayfly taxa richness, the Hilsenhoff Biotic Index (HBI) value (Hilsenhoff 1987), the richness and abundance of hemoglobin-bearing taxa and the richness of sensitive taxa are often used as indicators of water quality. Mayfly taxa richness has been demonstrated to be significantly correlated with chemical measures of dissolved oxygen, pH, and conductivity (e.g. Bollman 1998,

Fore et al. 1996, Wisseman 1996). The HBI has a long history of use and validation (Cairns and Pratt 1993, Smith and Tran 2010, Johnson and Ringler 2014). The index uses the relative abundance of taxa and the tolerance values associated with them to calculate a score representative of the tolerance of a benthic invertebrate assemblage to organic pollution. Higher HBI scores indicate more tolerant assemblages. In one study, the HBI was demonstrated to be significantly associated with conductivity, pH, water temperature, sediment deposition, and the presence of filamentous algae (Bollman 1998). Nutrient enrichment often results in large crops of filamentous algae (Watson 1988). Thus in these samples, when macroinvertebrates associated or dependent on filamentous algae (e.g. LeSage and Harrison 1980, Anderson 1976) are abundant, the presence of filamentous algae and nutrient enrichment are also suspected. In addition, low oxygen concentrations are often a result of nutrient enrichment in situations where enrichment has encouraged excessive plant growth; nocturnal respiration by these plants creates hypoxic conditions. Hemoglobin-bearing taxa are very tolerant of environments with low oxygen concentrations, because the hemoglobin in their circulating fluids enables them to carry more oxygen than organisms without it. Finally, pollution-sensitive taxa exhibit intolerance to a wide range of stressors (e.g. Wisseman 1996, Hellawell 1986, Barbour et al. 1999), including nutrient enrichment, acidification, thermal stress, sediment deposition, habitat disruption, and other causes of degraded ecosystem health. These taxa are expected to be present in predictable numbers in well-functioning streams.

The absence of invertebrate groups known to be sensitive to metals and the Metals Tolerance Index (MTI, McGuire 1998) are considered signals of possible metals contamination. Metals sensitivity for some groups, especially the heptageniid mayflies, is well-known (e.g. Kiffney and Clements 1994, Clements 1999, Clements 2004, Montz et al. 2010, Iwasaki et al. 2013). In the present approach, the absence of these groups in environs where they are typically expected to occur is considered a signal of possible metals contamination, especially when these signals are combined with a measure of overall assemblage tolerance of metals. The MTI ranks taxa according to their sensitivity to metals. Weighting taxa by their abundance in a sample, assemblage tolerance is estimated by averaging the tolerance of all sampled individuals. Higher values for the MTI indicate assemblages with greater tolerance to metals contamination.

Thermal characteristics of the sampled site are predicted by the richness and abundance of coldstenotherm taxa (Clark 1997), which require low water temperatures, and by calculation of the predicted temperature preference of the macroinvertebrate assemblage (Brandt 2001). Hemoglobin-bearing taxa are also indicators of warm water temperatures (Walshe 1947), because dissolved oxygen is directly associated with water temperature (colder water can hold more dissolved oxygen); oxygen concentrations can also vary with the degree of nutrient enrichment. Increased temperatures and high nutrient concentrations can, alone or in concert, create conditions favorable to hypoxic sediments, habitats preferred by hemoglobin-bearers.

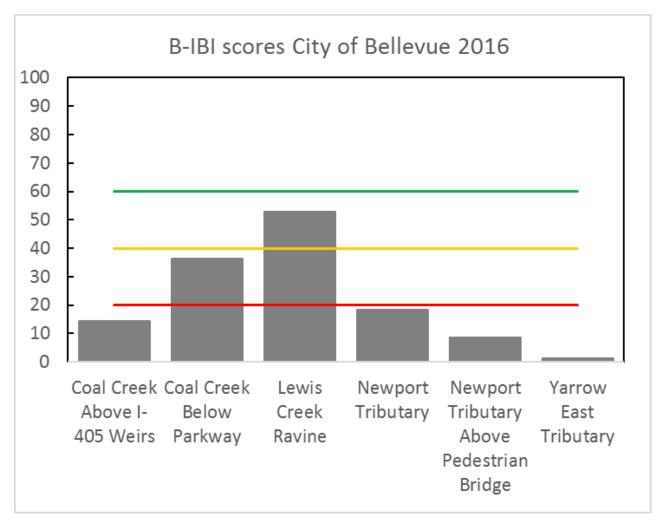
Stress from sediment is evaluated by caddisfly richness and by "clinger" richness (Kleindl 1995, Bollman 1998, Karr and Chu 1999, Wagenhoff et al. 2012, Leitner et al. 2015). The Fine Sediment Biotic Index (FSBI) (Relyea et al. 2001) is also used. Similar to the HBI, tolerance values are assigned to taxa based on the substrate particle sizes with which the taxa are most frequently associated. Scores are determined by weighting these tolerance values by the relative abundance of taxa in a sample. Higher values of the FSBI indicate assemblages with greater finesediment sensitivity. However, it appears that FSBI values may be influenced by the presence of other deposited material, such as large organic material, including leaves and woody debris.

Functional characteristics of the macroinvertebrate assemblages may also reveal the condition of instream and streamside habitats. Alterations from predicted patterns of the functional characteristics may be interpreted as evidence of water quality or habitat disruption. Predicted patterns are based on the morphology and behaviors associated with feeding, and are interpreted in terms of the River Continuum Concept (Vannote et al. 1980) in the narratives. For example, the abundance of stonefly predators is likely to be related to the diversity of invertebrate prey species, and thus the stability and complexity of streamside habitats. Sites with fewer than expected stonefly species are likely to have reduced habitat complexity. Also, the absence of long-lived species (those that take 2 years to mature in the stream) is likely related to catastrophes like periodic scour, thermal stress or toxic pollutants that could interrupt long life cycles. In addition, shredders and the microbes they depend on are sensitive to modifications of the riparian zone vegetation (Plafkin et al. 1989).

RESULTS

Quality control procedures

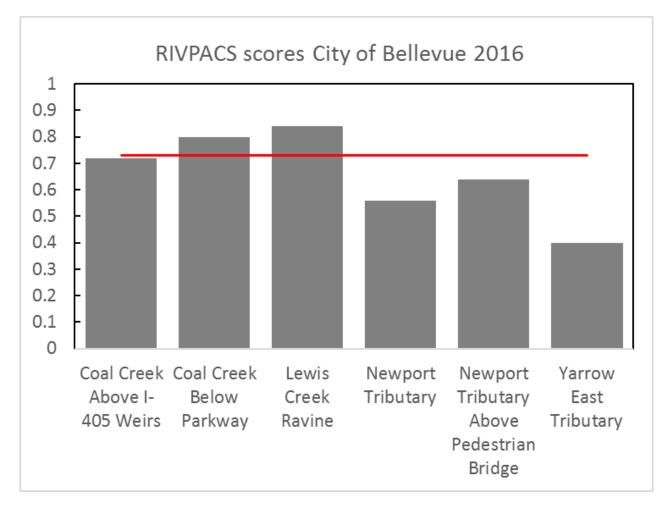
Sorting efficiency for the randomly-selected quality control samples was 95.43%. PDE was (0.40%), PTD (1.80%), and Bray-Curtis similarity was 98.59%. All QC parameters met Rhithron's internal quality criteria (Rhithron Associates 2013), and were all well within industry standards for sorting and taxonomic data quality (Stribling et al. 2003).

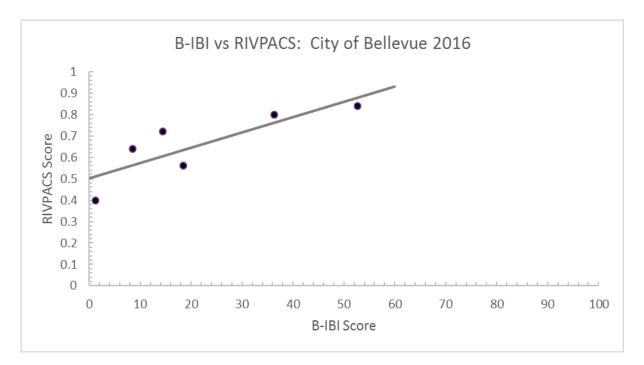

Data analysis

Taxa lists and counts, and values and scores for standard bioassessment metrics for composited replicate samples are given in the Appendix. Table 1 summarizes B-IBI and RIVPACS scores for sites and for sample replicates.

Site B-IBI scores varied from 1.2 to 52.7 for City of Bellevue in 2016 (Table 1, Figure 1). These scores indicated "very poor" conditions for 4 sites (Coal Creek Above I-405 Weirs, Newport Tributary, Newport Tributary Above Pedestrian Bridge, and Yarrow East Tributary), "poor" conditions for one site (Coal Creek Below Parkway) and "fair" conditions for one site (Lewis Creek Ravine). The site score for Lewis Creek Ravine was determined by scoring a composite sample made by combining the 2 replicates. Individual replicates for Lewis Creek Ravine scored "poor" and "fair."

Table 1. B-IBI scores and RIVPACS scores for replicates and for sites. The B-IBI site score and the RIVPACs site score for the Lewis Creek Ravine site, from which 2 replicates were collected, were obtained by scoring the composited replicates. All B-IBI scores were calculated by the PSSB website database application. City of Bellevue, 2016.


			B-IB	Scores	RIVPA	CS Scores	
Station name	Bellevue site ID	Site		Site (composite)	Replicate	Site (composite)	
Coal Creek Above I- 405 Weirs	CoalBelRM0.8	CoalBelRM0.8_2016R1	14.4		0.72		
Coal Creek Below Parkway	CoalBelRM1.8	CoalBelRM1.8_2016R1	36.3		0	0.80	
Lewis Creek Ravine Rep 1	LewisBelRM1.8	LewisBelRM1.8_2016R1	40.7	52.7	0.76	0.84	
Lewis Creek Ravine Rep 2	LewisBelRM1.8	LewisBelRM1.8_2016R2	34.3		0.76		
Newport Tributary	NewpBelRM0.0	NewpBelRM0.0_2016R1	1	8.5	0	.56	
Newport Tributary Above Pedestrian Bridge	NewpBelRM0.25	NewpBelRM0.25_2016R1	8.5		0.64		
Yarrow East Tributary	YarrowEastTribBelRM0.3	YarrowEastTribBelRM0.3_2016R1	-	1.2	0	.40	


Figure 1. B-IBI site scores for stream sites in the City of Bellevue, 2016. The green line indicates the threshold (B-IBI = 60) for "good" conditions, as described on the Puget Sound Stream Benthos website (pugetsoundstreambenthos.org, accessed May 2016) for scoring using a 0-100 continuous scale. Scores below the threshold indicate impaired conditions. The yellow line is the threshold (B-IBI = 40) for "fair" conditions; scores falling below the threshold indicate "poor" conditions. Scores falling below the red line (B-IBI = 20) indicate "very poor" conditions.

RIVPACS site scores varied from 0.40 to 0.84 (Table 1, Figure 2). These scores indicated "impaired" biological conditions in 2016 for 4 of the 6 sites. RIVPACS scores of Coal Creek Below Parkway and Lewis Creek Ravine indicated "unimpaired" conditions. The RIVPACS site score at Lewis Creek Ravine was obtained by scoring the composite of the two replicate samples. Individual replicate scores for Lewis Creek Ravine also indicated "unimpaired" conditions.

B-IBI site scores and RIVPACS site scores for the 6 locations in this study were significantly correlated with each other (r = 0.8374, p = 0.0375). Figure 3 illustrates this relationship.

Figure 2. RIVPACS site scores for stream sites in the City of Bellevue, 2016. The red line indicates the threshold (RIVPACS = 0.73) for "unimpaired" conditions, set by WDOE. Scores below the threshold indicate impaired conditions.

Figure 3. Correlation between B-IBI site scores and RIVPACS site scores for locations in the City of Bellevue, 2016. The relationship was significant (r = 0.8374, p = 0.0375).

Characteristics of the aquatic invertebrate assemblages

Coal Creek Above I-405 Weirs

Bioassessment scores: 2016

The B-IBI site score (14.4) indicated "very poor" biological condition. The RIVPACS score (0.72) also indicated "impaired" conditions.

Indicators of ecological condition: 2016

a. Water quality

Water quality appears to be impaired at Coal Creek-Above I-405 Weirs in 2016. The ubiquitous *Baetis tricaudatus* complex (25.9%), although very abundant, was the only mayfly taxon collected. The HBI (5.27) was elevated above expectations for a Puget Sound Lowlands stream indicating an assemblage that was tolerant of organic pollution. The functional composition of the assemblage was strongly dominated by collector-filterers (44.5%), primarily the filtering blackfly Simulium sp. (27.6%), the dominant taxon in the sample, and the filtering caddisfly Hydropsyche sp. (13.4%). In addition, caddisflies in the family Hydroptilidae (4.8%) were common. These caddisflies are often thought to be associated with filamentous algae, large crops of which are suggestive of nutrient enrichment. Hemoglobinbearing organisms (3.5%), primarily the midge Phaenopsectra sp. (2.9%), were common suggesting that sediments may be hypoxic. All of these characteristics seem to indicate that water quality was impaired through nutrient enrichment. No pollution-sensitive taxa were collected; however, pollution-tolerant organisms accounted for only 2.9% of the fauna. Several specimens in the flatworm class Trepaxonemata were collected suggesting that ground water inputs occur in this reach. The MTI value (4.60) was lower than the biotic index value, thus there was little evidence for metals contamination.

b. Thermal condition

No cold-stenotherm taxa were detected in this sample. The thermal preference estimated for the assemblage was 14.7°C.

c. Sediment deposition

At least 3 caddisfly and 13 "clinger" taxa were reported from this site, both below expectations. Two of the caddisfly taxa were common; however, limitation of invertebrate colonization by fine sediment cannot be ruled out here. An FSBI value of 4.23 indicated a moderately sediment-tolerant assemblage.

d. Habitat diversity and integrity

Low taxa richness (31) at this site suggests that instream habitats were disturbed or monotonous. The stonefly fauna was represented by at least 3 taxa: *Zapada cinctipes* (1.7%) was common, whereas *Skwala* sp. (0.4%) and *Malenka* sp. (0.9%) were less common. Reach-scale habitat features such as riparian zones, channel morphology and stream banks may

have been disrupted. Only 2 semivoltine taxa (the elmids *Heterlimnius corpulentus* (6.8%) and *Narpus concolor* (0.9%)) were reported making it likely that this site may have been subjected to thermal stress, toxic pollutants or other catastrophes that would interrupt long life cycles. Collectors (84.1%) overwhelmed the functional mix indicating the importance of fine particulate organic matter to the food web in this reach. Scrapers (2.9%) and shredders (3.1%) were not well represented, thus both autochthonous production from algae and Inputs from stream-side vegetation were probably not as important to the food web as the fine particulate matter.

Coal Creek Below Parkway

Bioassessment scores: 2016

The B-IBI site score for this site was 36.3, indicating "poor" conditions. The RIVPACS result (0.80) indicated "unimpaired" conditions.

Indicators of ecological condition: 2016

a. Water quality

A single mayfly taxon, the widespread and common *Baetis tricaudatus* (9.0%), was reported from this site. The biotic index value (4.27) was elevated above expectations indicating an assemblage that was moderately tolerant of organic pollution. Although the percentage of hemoglobin-bearing organisms in the sample was low (0.2%) suggesting that sediments were not hypoxic, caddisflies in the family Hydroptilidae were abundant (14.3%). Similar to the upstream site Coal Creek - Above I-405 Weirs, this suggests abundant filamentous algae that is often thought to indicate nutrient enrichment. This hypothesis is supported by the fact that collector-filterers (26.9%) were abundant. This is to be expected given that the dominant organisms in the sample were the filtering dipteran Simulium sp. (14.1%) and the filtering caddisfly Hydropsyche sp. (12.2%). The combination of low mayfly taxa richness, an elevated biotic index, abundant hydroptilid caddisflies, and dominance of collector-filterers suggest that water quality was impaired by nutrient enrichment. No pollution-sensitive taxa were collected, but the abundance of pollution-tolerant organisms (3.2%) was low. Similar to Coal Creek - Above I-405 Weirs, several specimens in the flatworm class Trepaxonemata were collected suggesting some inputs of ground water in this reach. The MTI (3.92) was lower than the HBI, thus there was no indication of contamination by metals.

b. Thermal condition

The temperature preference of the assemblage was 15.1 °C. No cold-stenotherm taxa were recorded in this sample.

c. Sediment deposition

Caddisflies were represented by at least 6 taxa many of which were common. Thirteen "clinger" taxa were collected. These findings suggest that the deposition of fine sediment did not limit colonization in this reach. The FSBI (4.09) indicated a moderately sediment-tolerant assemblage.

d. Habitat diversity and integrity

Taxa richness (34) was somewhat lower than expected at this site suggesting that some disturbance to instream habitats cannot be ruled out here. At least 4 stonefly taxa were recorded from this site including *Zapada cinctipes* (4.7%) and *Malenka* sp. (6.0%) that were common: riparian zones, channel morphology and stream banks were probably in good condition. Similar to Coal Creek - Above I-405 Weirs, the elmids *Heterlimnius corpulentus* (10.3%) and *Narpus concolor* (0.8%) were the only long-lived taxa collected, suggesting that some catastrophic conditions may have disrupted the life cycles of long-lived taxa. All functional feeding groups, except scrapers (3.4%), were well represented with the dominant groups being the gatherers (32.7%) and the filterers (26.9%) suggesting the importance of fine particulate organic matter to the energy flow of the system. In addition, shredders, dominated by individuals in the stonefly family Nemouridae, were abundant (12.4%) suggesting ample inputs of streamside vegetation.

Lewis Creek Ravine

Bioassessment scores: 2016

Two replicate samples were collected at Lewis Creek Ravine in 2016 and this analysis is based on scores calculated from the composited replicates. The B-IBI score was 52.7 indicating "fair" biological condition. The RIVPACS score (0.84) indicated "unimpaired" biological condition.

Indicators of ecological condition: 2016

Discussion of the indicators of ecological condition are based on a composite of the 2 replicate samples that were collected at this site in 2016. In most cases, the results of richness metrics cannot be compared directly to results from sites where only a single sample was collected because this site was represented by a total of 867 invertebrates, a much higher number than the other sites. However, richness metrics can be compared if the numbers are low even with the additional specimens collected in this reach.

a. Water quality

Results of the ecological characteristics that indicate water-quality status was mixed at this site. Only 2 mayfly taxa, the ubiquitous *Baetis tricaudatus* complex (17.4%) and the heptageniid *Cinygma* sp. (1.0%), and only 1 pollution-sensitive taxon (*Cinygma* sp.) were recorded from this reach. Given the greater number of specimens collected in this composite sample compared to the other sites, the low mayfly and sensitive taxa diversities are significant. In addition, the abundance of collector-filterers (18.2%) were somewhat elevated over expectations and hemoglobin-bearing organisms (2.3%) were common. These results suggest that nutrient enrichment could influence the fauna here. However, the HBI (3.91) was within expectations for a Puget Sound Lowlands stream and pollution-tolerant taxa (0.4%) composed only a small percentage of the fauna suggesting unimpaired water quality. Given these combined results, it appears that water quality impairment as the result of nutrient

enrichment cannot be ruled out in this reach. No evidence for metals contamination was found because the MTI was only 3.24 and heptageniid mayflies were found in the sample.

b. Thermal condition

Two cold-stenotherm taxa were encountered in the sample: the aforementioned mayfly *Cinygma* sp. and the limnephilid caddisfly *Psychoglypha* sp., which was represented by only 1 specimen. The temperature preference of the assemblage was 13.5°C.

c. Sediment deposition

Eight caddisfly and 22 "clinger" taxa were collected at this site. The FSBI was 3.98, indicating that the taxa were moderately tolerant of fine sediment. These findings suggest that sediment deposition probably did not limit invertebrate colonization of the stony substrate habitats in this reach.

d. Habitat diversity and integrity

Invertebrate diversity was high as 53 total taxa and 6 stonefly taxa were discovered in this composited sample. Consequently, instream habitats appear to be diverse and reach-scale habitat features, such as riparian zones and stream banks, appear to be undisturbed. Catastrophes like periodic thermal extremes, dewatering, or discharge of toxic pollutants are probably unlikely here as 6 semivoltine taxa were collected some of which were common (i.e., *Parapsyche* sp., 3.9%). Collector-gatherers (45.6%) dominated the functional composition. Indeed, the gathering amphipod *Crangonyx* sp. (17.8%) was the dominant organism in a sample. The dominance of gatherers and filterers indicates that fine organic particulates were an important energy source in this reach. All other functional groups were well represented.

Newport Tributary

Bioassessment scores: 2016

The B-IBI score (18.5) calculated for the sample collected at this site indicated "very poor" conditions; the RIVPACS score (0.56) also indicated impairment.

Indicators of ecological condition: 2016

a. Water quality

As with many of the sites sampled in 2016, a single mayfly taxon, the ubiquitous *Baetis tricaudatus* (3.9%) and no pollution-sensitive taxa were collected from this site. The HBI (4.13) was only slightly elevated above expectations for a for a Puget Sound Lowlands stream. In addition, midges in the genus *Orthocladius* (11.6%) were abundant suggesting that large crops of filamentous algae may be present which is often thought to indicate nutrient enrichment. However, all other indicators suggested that water quality was unimpaired. Pollution-tolerant and hemoglobin-bearing organisms each composed only 0.6% of the fauna. Collector-filterers (5.0%) were only a small component of the food web. Because of the low mayfly diversity, the lack of sensitive taxa in the sample, and the slightly elevated HBI, water

quality impairment cannot be dismissed. There was no evidence of metals contamination (MTI = 3.09).

b. Thermal condition

The temperature preference of the assemblage was only 13.7°C. However, no coldstenotherm taxa were found in this sample.

c. Sediment deposition

Only 2 caddisfly taxa, composing less than 2.0% of the assemblage, were found in this reach both in the genus *Rhyacophila*. Only 8 "clinger" taxa were recorded. The FSBI value was 2.76 indicating an assemblage that was fine-sediment tolerant. These results indicate that colonization of some insect taxa may be limited by the deposition of fine sediment.

d. Habitat diversity and integrity

Taxa richness (38) was low in this assemblage suggesting that instream habitats were not very diverse and perhaps disturbed. At least 2 stonefly taxa were collected all of which were nemourids: *Malenka* sp. (20.5%) was the dominant organism in the sample and *Zapada cinctipes* (15.4%) was also very abundant. However, the very low stonefly diversity suggests that reach-scale habitat features were very disturbed. Only 1 semivoltine taxon was collected making it likely that disasters such as thermal stress, dewatering and release of toxic pollutants could have significantly interrupted long life cycles. Interestingly, the functional composition of the assemblage was dominated by shredders (46.5%), which is to be expected given the high relative abundance of shredding stoneflies. Collector-gatherers (43.2%) were also extremely abundant, whereas scrapers (0.8%) were rare. These results suggest that both allochthonous coarse particulate and fine particulate organic matter are important components of the energy flow in this system.

Newport Tributary Above Pedestrian Bridge

Bioassessment scores: 2016

The B-IBI score (8.5) generated by this sample indicated "very poor" biological condition. Biological condition was also considered "impaired" based on the RIVPACS score (0.64).

Indicators of ecological condition: 2016

a. Water quality

Only 7 specimens of 1 mayfly taxon *Baetis rhodani Gr.* (1.4%) were collected in this reach and the HBI was slightly elevated (4.18). Further, no pollution-sensitive taxa were recorded and collector-filterers (47.4%) dominated the functional mix. Almost all of the collector-filterers were blackflies (*Simulium* sp., 45.8%) the dominant organisms in the assemblage. In contrast, pollution-tolerant (0.2%) and hemoglobin-bearing (0.2%) organisms were only small components of the fauna. However, the low mayfly diversity, slightly elevated HBI, lack of sensitive taxa, and dominance of the food web by collector-filterers all suggest that water

quality was impaired perhaps through nutrient enrichment. A MTI of 4.11 suggests little impact from metals contamination.

b. Thermal condition

No cold-stenotherm taxa were recorded from this reach. The calculated temperature preference of the assemblage was 12.4 °C.

c. Sediment deposition

Five caddisfly taxa were collected in this reach which is within expectations for a Puget Sound Lowlands stream. However, only 8 "clingers" were recorded. These results suggest that limitation of colonization of some invertebrate species by the deposition of fine sediments cannot be dismissed at this site. The low FSBI (3.01) indicated a sediment-tolerant assemblage, which also supports this contention.

d. Habitat diversity and integrity

The habitat appears to be disturbed at this site. This site had the lowest total taxa richness (19) of any of the sites where samples were taken in 2016, which may indicate disturbed or monotonous instream habitats. The sample also contained only 1 unique stonefly taxon (*Malenka* sp., 6.2%). The low taxa richness of stoneflies suggests streambanks, riparian zones, or channel morphology may have been disturbed. Only 2 semivoltine taxa were recorded, thus catastrophes such as periodic dewatering, scouring sediment pulses, or intermittent inputs of toxic pollutants cannot be ruled out. As mentioned above, the functional composition of the benthic assemblage was dominated by collector-filterers because of the abundance of blackflies in the sample. Gatherers (13.4%) and shredders (25.2%) were also abundant. These results suggest that allochthonous fine and coarse particulate matter was the dominant energy producer in this food web.

Yarrow East Tributary

Bioassessment scores: 2016

Biological condition was considered "very poor" based on the B-IBI score (1.2) at Yarrow East Tributary. The RIVPACS score (0.40) also indicated impairment. This sample had both the lowest B-IBI score and the lowest RIVPACS score of any sample in this year's study.

Indicators of ecological condition: 2016

a. Water quality

Similar to several other sites in 2016, the ubiquitous *Baetis tricaudatus* complex was the only mayfly taxon collected although it was abundant (12.0%). The HBI was high (5.50) and no pollution-sensitive taxa were found in the sample. However, pollution-tolerant organisms (1.2%) and hemoglobin-bearing organisms (0.0%) were rare or absent and collector-filterers (2.3%) were not abundant. Interestingly, the assemblage at this site was dominated by non-insects (> 80.0% of the specimens). In particular, the amphipod *Crangonyx* sp. (46.8%) was the dominant organism in the assemblage. In addition, flatworms in the class Trepaxonemata were abundant (14.2%), consequently it appears that inputs of ground water influence the

fauna in this reach. Given these results, water quality impairment as a result of nutrient enrichment cannot be dismissed. The MTI (3.66) suggests no impact from metals contamination.

b. Thermal condition

No cold-stenotherm taxa were collected in this sample. The calculated temperature preference of the assemblage was 15.5°C.

c. Sediment deposition

Only 2 caddisfly taxa (*Hydropsyche* sp. and *Rhyacophila Brunnea/Vemna* Gr.) were recorded in this reach and each was represented by only 1 specimen (0.2%). "Clingers" were equally rare as only 3 taxa were recorded. Clearly, the deposition of fine sediments may have limited the colonization of some invertebrate species. The FSBI (5.11) indicated a moderately sediment-tolerant assemblage.

d. Habitat diversity and integrity

As with Newport Tributary - Above pedestrian bridge, the habitat appears to be extremely disturbed at this site. Only 21 total taxa, 1 stonefly taxon (*Malenka* sp., 1 specimen. 0.2% of the assemblage), and no semivoltine taxa were found here. Instream and reach-scale habitat features seem to be either monotonous or disturbed. Catastrophes such as periodic dewatering, scouring sediment pulses, or intermittent inputs of toxic pollutants may also be common and thus, the life cycles of long-lived organisms are disrupted. The functional composition of the benthic assemblage was strongly dominated by collector-gatherers (77.9%), in particular, the amphipod *Crangonyx* sp. (46.8%). No scrapers were collected and shredders (0.6%) were rare. These results suggest that allochthonous fine particulate matter dominated the food web: autochthonous algal production and leaves and other coarse particulate matter were of little consequence to the food web.

DISCUSSION

The B-IBI indicated "fair" conditions at 1 site (Lewis Creek Ravine), "poor" conditions at 1 site (Coal Creek Below Parkway), and "very poor" conditions at the other 4 sites. The RIVPACS scores of 2 sites (Coal Creek Below Parkway and Lewis Creek Ravine) were considered "unimpaired," whereas all other sites were classified as "Impaired." Multiple sources of stress were suggested by analysis of the ecological condition of the invertebrate assemblages at all but one of the sites. Table 2 summarizes the stressors suggested by the analysis of the taxonomic and functional characteristics of the biotic assemblages. Evidence for metals contamination could not be readily identified from the components of the biota at any site.

Table 2. Summary of possible stressors, as suggested by the taxonomic and functional composition ofinvertebrate assemblages. City of Bellevue, 2016.

Site	water quality degradation	metals	thermal stress	sediment deposition	habitat disruption
Coal Creek Above I-405 Weirs	+			?	+
Coal Creek Below Parkway	+				+
Lewis Creek	?				
Newport Tributary	?			+	+
Newport Tributary Above Pedestrian Bridge	+			?	+
Yarrow East Tributary	?			+	+

LITERATURE CITED

Anderson, N. H. 1976. The distribution and biology of the Oregon Trichoptera. Oregon Agricultual Experimentation Station Technical Bulletin No. 134: 1-152.

Barbour, M.T., J.Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Washington, D.C.

Bollman, W. 1998. Improving Stream Bioassessment Methods for the Montana Valleys and Foothill Prairies Ecoregion. Master's Thesis (MS). University of Montana. Missoula, Montana.

Brandt, D. 2001. Temperature Preferences and Tolerances for 137 Common Idaho Macroinvertebrate Taxa. Report to the Idaho Department of Environmental Quality, Coeur d' Alene, Idaho.

Bray, J. R. and J. T. Curtis. 1957. An ordination of upland forest communities of southern Wisconsin. Ecological Monographs 27: 325-349.

Cairns, J., Jr. and J. R. Pratt. 1993. A History of Biological Monitoring Using Benthic Macroinvertebrates. Chapter 2 *in* Rosenberg, D. M. and V. H. Resh, eds. *Freshwater Biomonitoring and Benthic Macroinvertebrates*. Chapman and Hall, New York.

Caton, L. W. 1991. Improving subsampling methods for the EPA's "Rapid Bioassessment" benthic protocols. Bulletin of the North American Benthological Society. 8(3): 317-319.

Clark, W.H. 1997. Macroinvertebrate temperature indicators for Idaho. Draft manuscript with citations. Idaho Department of Environmental Quality. Boise, Idaho.

Clements, W. H. 1999. Metal tolerance and predator-prey interactions in benthic stream communities. *Ecological Applications* 9: 1073-1084.

Clements, W. H. 2004. Small-scale experiments support casual relationships between metal contamination and macroinvertebrate community response. *Ecological Applications* 14: 954967.

Fore, L.S. 2003. Biological assessment of mining disturbance on stream invertebrates in mineralized areas of Colorado. Chapter 19 *in* Simon, T.P. ed. *Biological Response Signatures: Indicator Patterns Using Aquatic Communities.*

Fore, L. S., J. R. Karr and R. W. Wisseman. 1996. Assessing invertebrate responses to human activities: evaluating alternative approaches. *Journal of the North American Benthological Society* 15(2): 212-231.

Hellawell, J. M. 1986. *Biological Indicators of Freshwater Pollution and Environmental Management*. Elsevier, London.

Hilsenhoff, W. L. 1987. An improved biotic index of organic stream pollution. *Great Lakes Entomologist.* 20: 31-39.

Iwasaki, Y., P. Cadmus, and W. H. Clements 2013. Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms. Aquatic Toxicology 132–133: 151–156

Johnson, S.L. and N. H. Ringler. 2014. The response of fish and macroinvertebrate assemblages to multiple stressors: A comparative analysis of aquatic communities in a perturbed watershed (Onondaga Lake, NY). Ecological Indicators 41: 198-208.

Karr, J.R. and E.W. Chu. 1999. *Restoring Life in Running Waters: Better Biological Monitoring*. Island Press. Washington D.C.

Kleindl, W.J. 1995. A benthic index of biotic integrity for Puget Sound Lowland Streams, Washington, USA. M.S. Thesis. University of Washington, Seattle, Washington.

LeSage, L. and A. D. Harrison. 1980. The biology of *Cricotopus* (Chironomidae: Orthocladiinae) in an algal-enriched stream. Archiv fur Hydrobiologie Supplement 57: 375-418.

Leitner, P., C. Hauer, T. Ofenböck, F. Pletterbauer, A. Schmidt-Kloiber, and W. Graf. 2015. Fine sediment deposition affects biodiversity and density of benthic macroinvertebrates: A case study in the freshwater pearl mussel river Waldaist (Upper Austria). Limnologica 50: 54-57.

McGuire, D. 1998 cited in Bukantis, R. 1998. Rapid bioassessment macroinvertebrate protocols: Sampling and sample analysis SOP's. Working draft. Montana Department of Environmental Quality. Planning Prevention and Assistance Division. Helena, Montana.

Montz, G. R., J. Hirsch, R. Rezanka, and D. F. Staples. 2010. Impacts of Copper on a Lotic Benthic Invertebrate Community: Response and Recovery. Journal of Freshwater Ecology 25: 575-587.

Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross and R. M. Hughes. 1989. Rapid Bioassessment Protocols for Use in Streams and Rivers. Benthic Macroinvertebrates and Fish. EPA 440-4-89-001. Office of Water Regulations and Standards, U.S. Environmental Protection Agency, Washington, D.C.

Puget Sound Stream Benthos. http://pugetsoundstreambenthos.org. Accessed May, 2016.

Relyea, C. D., G.W. Minshall, and R.J. Danehy. 2001. Stream insects as bioindicators of fine sediment. *In:* Proceeding Watershed 2000, Water Environment Federation Specialty Conference. Vancouver, BC.

Rhithron Associates. 2013. Laboratory Quality Assurance Plan. Working draft, version 13.2.d. Rhithron Associates, Inc. Missoula, Montana.

Smith, A. J. and C. P. Tran. 2010. A weight-of-evidence approach to define nutrient criteria protective of aquatic life in large rivers. Journal of the North American Benthological Society 29: 875-891.

Stribling, J.B., S.R Moulton II and G.T. Lester. 2003. Determining the quality of taxonomic data. J.N. Am. Benthol. Soc. 22(4): 621-631.

Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., and C.E. Cushing. 1980. The river continuum concept. *Canadian Journal of Fisheries and Aquatic Sciences* 37:130-137.

Wagenhoff, A. C. R. Townsend, and C. D. Matthaei. 2012. Macroinvertebrate responses along broad stressor gradients of deposited fine sediment and dissolved nutrients: A stream mesocosm experiment. Journal of Applied Ecology 49: 892-902.

Walshe, J. F. 1947. On the function of haemoglobin in *Chironomus* after oxygen lack. *Journal of Experimental Biology* 24: 329-342.

Watson, V. J. 1988. Control of nuisance algae in the Clark Fork River. Report to Montana Department of Health and Environmental Sciences. Helena, Montana.

Wisseman R.W. 1998. Common Pacific Northwest benthic invertebrate taxa: Suggested levels for standard taxonomic effort: Attribute coding and annotated comments. Unpublished draft. Aquatic Biology Associates, Corvallis, Oregon.

APPENDIX

Taxa lists and metric summaries, City of Bellevue, Washington, 2016

RAI No.:

Date Coll.:

Project ID: CB16LDC

RAI No .: CB16LDC001

Sta. Name: Lewis Creek Ravine - Composite

Client ID: LewisBelRM1.8_2016 8/12/2016

CB16LDC001

No. Jars:	STORET ID

STORET ID	COMI	POSITE
-----------	------	--------

Taxonomic Name	Count	PRA	Unique	Stage	Qualifier	BI	Function
Other Non-Insect							
Hydrozoa							
Hydrozoa	4	0.46%	Yes	Unknown		5	PR
Planariidae							
Polycelis sp.	5	0.58%	Yes	Unknown		1	OM
Trepaxonemata							
Trepaxonemata	1	0.12%	Yes	Unknown		11	PR
Nemata							
Nemata	3	0.35%	Yes	Unknown		5	UN
Enchytraeidae							
Enchytraeus sp.	2	0.23%	Yes	Unknown		4	CG
Fridericia sp.	2	0.23%	Yes	Unknown		11	CG
Naididae							
Nais sp.	1	0.12%	Yes	Unknown		8	CG
Lumbriculidae							
Lumbriculidae	16	1.85%	Yes	Immature		4	CG
Sphaeriidae							
Sphaeriidae	2	0.23%	Yes	Unknown		8	CF
Planorbidae							•••
Menetus sp.	2	0.23%	Yes	Unknown		6	SC
Crangonyctidae	_					-	
Crangonyx sp.	154	17.76%	Yes	Unknown		6	CG
Acari						-	
Acari	9	1.04%	Yes	Unknown		5	PR
Ephemeroptera	·			••••••		·	
Baetidae							
Baetis tricaudatus complex	151	17.42%	Yes	Larva		5	CG
Heptageniidae	101	11.42 /0	100	Luiva		Ŭ	
Cinygma sp.	9	1.04%	Yes	Larva		0	SC
Plecoptera	5	1.04 /0	163	Laiva		Ū	50
Plecoptera							
Plecoptera	1	0.12%	No	Larva	Early Instar	11	PR
Chloroperlidae	I I	0.12/0		Laiva			IK
Sweltsa sp.	3	0.35%	Yes	Larva		0	PR
Nemouridae	3	0.33%	Tes	Ldiva		U	FK
Malenka sp.	04	10.84%	Vac	Longo		1	SH
Zapada cinctipes	94	0.92%	Yes Yes	Larva Larva		-	SH
Periodidae	8	0.92%	162	Laiva		3	эп
Kogotus sp.	-	0.040/	V	Long		4	
Skwala sp.	7	0.81%	Yes	Larva		1	PR
	1	0.12%	Yes	Larva		3	PR
Pteronarcyidae Pteronarcys sp.		0 4 004	V		E ante la cr	-	
rieronarcys sp.	1	0.12%	Yes	Larva	Early Instar	2	SH

RAI No.:

Date Coll.:

Project ID: CB16LDC

RAI No.: CB16LDC001

Sta. Name: Lewis Creek Ravine - Composite

Client ID: LewisBelRM1.8_2016

8/12/2016

CB16LDC001

No. Jars:

STORET ID:	COMPOSITE
UTURET ID.	

Faxonomic Name	Count	PRA	Unique	Stage	Qualifier	BI	Function
Trichoptera							
Glossosomatidae							
Glossosoma sp.	29	3.34%	Yes	Larva		0	SC
Glossosomatidae	19	2.19%	No	Pupa		0	SC
Hydropsychidae							
Hydropsyche sp.	73	8.42%	Yes	Larva		5	CF
Hydropsychidae	2	0.23%	No	Pupa		4	CF
Hydropsychidae	9	1.04%	No	Larva	Early Instar	4	CF
Parapsyche sp.	34	3.92%	Yes	Larva		0	PR
Lepidostomatidae							
Lepidostoma sp.	14	1.61%	Yes	Larva		1	SH
Limnephilidae							
Psychoglypha sp.	1	0.12%	Yes	Larva		0	SH
Polycentropodidae							
Polycentropodidae	1	0.12%	Yes	Larva	Damaged	6	CF
Rhyacophilidae					-		
Rhyacophila sp.	5	0.58%	No	Larva	Early Instar	1	PR
Rhyacophila Betteni Gr.	2	0.23%	Yes	Larva	•	0	PR
Rhyacophila Brunnea/Vemna Gr.	9	1.04%	Yes	Larva		2	PR
Coleoptera							
Elmidae							
Cleptelmis addenda	1	0.12%	Yes	Larva		4	CG
Elmidae	2	0.23%	No	Larva	Early Instar	4	CG
Heterlimnius corpulentus	- 1	0.12%	Yes	Adult		3	CG
Heterlimnius corpulentus	2	0.23%	No	Larva		3	CG
Lara sp.	- 1	0.12%	Yes	Larva		1	SH
Narpus concolor	1	0.12%	Yes	Larva		2	CG
Diptera	-	•				-	
Ceratopogonidae							
Forcipomyiinae	5	0.58%	Yes	Larva		6	PR
Dixidae	Ū	0.0070	100	Luiva		Ũ	1 10
Dixa sp.	2	0.23%	Yes	Larva		1	CG
Empididae	-	0.2070	100	Luiva		•	00
<i>Clinocera</i> sp.	1	0.12%	Yes	Larva		5	PR
Psychodidae		0.12/0	165	Laiva		5	
Maruina sp.	16	1.85%	Yes	Larva		1	SC
Pericoma sp.	10	0.12%	Yes	Larva		4	CG
Psychodidae	5	0.58%	No	Pupa		4	CG
Simuliidae	5	0.0070		гира		-	00
Simulium sp.	12	1.38%	No	Pupa		6	CF
Simulium sp.	47	1.30% 5.42%	Yes	Larva		6	CF
Tipulidae	47	J.4270	162	Laiva		U	UF
Dicranota sp.	1	0.12%	Yes	Larva		2	PR
						3	
<i>Tipula</i> sp.	4	0.46%	Yes	Larva		4	SH

RAI No.:

Date Coll.:

Project ID: CB16LDC

RAI No.: CB16LDC001

Sta. Name: Lewis Creek Ravine - Composite

Client ID: LewisBelRM1.8_2016

CB16LDC001

8/12/2016 No. Jars:

STORET ID: COMPOSITE

Taxonomic Name	Count	PRA	Unique	Stage	Qualifier	BI	Function
Chironomidae							
Chironominae							
Microtendipes sp.	1	0.12%	Yes	Larva		6	CF
Polypedilum sp.	2	0.23%	No	Pupa		6	SH
Polypedilum sp.	14	1.61%	Yes	Larva		6	SH
Chironominae							
Micropsectra sp.	3	0.35%	No	Pupa		4	CG
Micropsectra sp.	33	3.81%	Yes	Larva		4	CG
Rheotanytarsus sp.	11	1.27%	Yes	Larva		6	CF
Stempellinella sp.	2	0.23%	Yes	Larva		4	CG
Orthocladiinae							
Brillia sp.	9	1.04%	Yes	Larva		4	SH
Corynoneura sp.	1	0.12%	Yes	Pupa		7	CG
Eukiefferiella Claripennis Gr.	1	0.12%	Yes	Larva		8	CG
Limnophyes sp.	3	0.35%	Yes	Larva		8	CG
Orthocladius lignicola	1	0.12%	Yes	Larva		11	CG
Parametriocnemus sp.	1	0.12%	Yes	Larva		5	CG
Paraphaenocladius sp.	1	0.12%	Yes	Larva		4	CG
<i>Tvetenia</i> sp.	1	0.12%	No	Pupa		5	CG
Tvetenia Bavarica Gr.	7	0.81%	Yes	Larva		5	CG
Sample Count	867						

Metrics Report


Project ID:	CB16LDC		
RAI No.:	CB16LDC001		
Sta. Name:	Lewis Creek Ra	avine - Compo	osite
Client ID:	LewisBelRM1.8	3_2016	
STORET ID	COMPOSITE		
Coll. Date:	8/12/2016		
Latitude:	47.5566	Longitude:	-122.1087

Abundance Measures

Sample Count:	867	
Sample Abundance:	867.00	100.00% of sample used
Coll. Procedure: Surber		
Sample Notes:		

Taxonomic Composition

Category	R	Α	PRA	
Terrestrial				
Other Non-Insect	8	180	20.76%	
Oligochaeta	4	21	2.42%	
Odonata				
Ephemeroptera	2	160	18.45%	
Plecoptera	6	115	13.26%	
Heteroptera				
Megaloptera				
Neuroptera				
Trichoptera	8	198	22.84%	
Lepidoptera				
Coleoptera	4	8	0.92%	
Diptera	8	94	10.84%	
Chironomidae	13	91	10.50%	

Dominant Taxa

Category	Α	PRA
Crangonyx	154	17.76%
Baetis tricaudatus complex	151	17.42%
Malenka	94	10.84%
Hydropsyche	73	8.42%
Simulium	59	6.81%
Micropsectra	36	4.15%
Parapsyche	34	3.92%
Glossosoma	29	3.34%
Glossosomatidae	19	2.19%
Polypedilum	16	1.85%
Maruina	16	1.85%
Lumbriculidae	16	1.85%
Lepidostoma	14	1.61%
Rheotanytarsus	11	1.27%
Hydropsychidae	11	1.27%

Functional Composition

Category	R	А	PRA
Predator	12	83	9.57%
Parasite			
Collector Gatherer	20	395	45.56%
Collector Filterer	6	158	18.22%
Macrophyte Herbivore			
Piercer Herbivore			
Xylophage			
Scraper	4	75	8.65%
Shredder	9	148	17.07%
Omnivore	1	5	0.58%
Unknown	1	3	0.35%

Pct

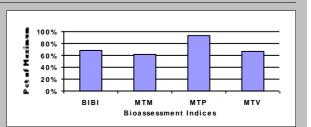
28 93.33% None

34 68.00%

Rating

Score

Montana Revised Valleys/Foothills (Bollman 1998) 12 66.67% Slight


Montana DEQ Mountains (Bukantis 1998) 13 61.90% Slight

E

li S

Metric Values and Scores

Metric Values and Scores	
Netric	Value
Composition	
Taxa Richness Richness Richness PT Richness PT Richness PT Percent Non-Insect Abundance NI Non-Insect Richness NI Non-Insect Percent Digochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera Dominance	53 2 6 8 16 54.56% 201 12 23.18% 2.42% 0.944 0.596
Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent Diversity	17.76% 35.18% 46.02% 76.70%
Shannon H (loge) Shannon H (log2) Aargalef D Simpson D Evenness Function	2.776 4.006 7.773 0.104 0.052
Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper-Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer	12 9.57% 6 18.22% 63.78% 25.72% 0.475 0.322
labit	
Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Dinger Richness Dinger Percent Characteristics	4 4.04% 2 17.65% 22 46.37%
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent <i>Joltinism</i>	2 1.15% 4 2.31% 4 3.11%
Jnivoltine Richness Semivoltine Richness Multivoltine Percent <i>Folerance</i>	27 6 12.00%
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent dilsenhoff Biotic Index ntolerant Percent Supertolerant Percent CTQa	3 2.42% 1 3.34% 3.244 1 0.35% 3.912 29.07% 0.81% 77.026

Friday, October 07, 2016

Bioassessment Indices

B-IBI (Karr et al.)

Montana DEQ Plains (Bukantis 1998)

BioIndex Description

BIBI

MTP

MTV

MTM

Project ID: CB16LD

RAI No.: CB16LD001

RAI No.: Sta. Name: CB16LD001 **Coal Creek below Parkway -Metro Access** Rep 1 Client ID: CoalBelRM1.8_2016R1 Date Coll.: No. Jars: 3 STORET ID: 8/11/2016 PRA Taxonomic Name Count Unique Stage Qualifier BI Function Other Non-Insect Trepaxonemata Trepaxonemata PR 6 1.13% Yes Unknown 11 Lumbriculidae Lumbriculidae 3 0.56% Immature CG Yes 4 Sphaeriidae Sphaeriidae 1 0.19% Unknown 8 CF Yes Crangonyctidae Crangonyx sp. 12 2.26% Yes Unknown 6 CG Ostracoda Ostracoda 5 0.94% Yes Unknown 8 CG Acari Acari 12 2.26% Yes Unknown 5 PR Ephemeroptera Baetidae Baetis tricaudatus complex 48 9.02% 5 CG Yes Larva Plecoptera Chloroperlidae Sweltsa sp. PR 2 0.38% Yes Larva 0 Nemouridae Malenka sp. 32 SH 6.02% Yes Larva 1 Nemouridae 6 1.13% 2 No Larva Early Instar SH Zapada cinctipes 25 4.70% Yes Larva 3 SH Perlodidae Skwala sp. 0.19% 3 PR 1 Yes Larva Trichoptera Glossosomatidae Glossosomatidae 17 3.20% Yes Pupa 0 SC Hydropsychidae Hydropsyche sp. 65 12.22% 5 CF Yes Larva Hydroptilidae Hydroptila sp. 17 3.20% Yes PH Larva 6 Hydroptilidae 59 11.09% No Pupa 4 PH Limnephilidae Dicosmoecus gilvipes 0.19% SC 1 Yes Larva 2 Onocosmoecus unicolor 1 0.19% Yes Larva 2 SH Rhyacophilidae Rhyacophila Brunnea/Vemna Gr. 9 1.69% Yes I arva 2 PR Coleoptera Elmidae Elmidae 2 0.38% No Adult Damaged 4 CG Heterlimnius corpulentus CG 11 2.07% Yes Adult 3 Heterlimnius corpulentus 44 8.27% No Larva 3 CG Narpus concolor 4 0.75% Yes Larva 2 CG

Project ID: CB16LD

RAI No.: CB16LD001

RAI No.: CB16LD001		:	Sta. Name: Coal Creek below Parkway -Metro Rep 1					
Client ID:	CoalBelRM1.8_20	16R1			кер	1		
Date Coll.:	8/11/2016	No. Jars: 3	:	STORET	ID:			
Taxonomic Name		Count	PRA	Unique	Stage	Qualifier	BI	Function
Diptera								
Simuliidae								
Simuliun	n sp.	6	1.13%	No	Pupa		6	CF
Simuliun	n sp.	69	12.97%	Yes	Larva		6	CF
Tipulidae								
Antocha	monticola	10	1.88%	Yes	Larva		3	CG
Antocha	monticola	11	2.07%	No	Pupa		3	CG
Dicranota	a sp.	5	0.94%	Yes	Larva		3	PR
<i>Tipula</i> sp).	1	0.19%	Yes	Larva		4	SH
Chironomidae								
Chironominae	9							
Polypedi	<i>ilum</i> sp.	1	0.19%	Yes	Larva		6	SH
Chironominae	9							
Micropse	ectra sp.	1	0.19%	Yes	Larva		4	CG
Rheotan	<i>ytarsus</i> sp.	2	0.38%	Yes	Larva		6	CF
Orthocladiina	e							
Eukieffer	<i>riella</i> sp.	2	0.38%	No	Pupa		8	CG
Eukieffer	riella Claripennis Gr.	12	2.26%	Yes	Larva		8	CG
Eukieffer	riella Devonica Gr.	2	0.38%	Yes	Larva		8	CG
Orthocla	<i>dius</i> sp.	3	0.56%	Yes	Larva		6	CG
Paramet	riocnemus sp.	2	0.38%	Yes	Larva		5	CG
Tvetenia	Bavarica Gr.	2	0.38%	Yes	Larva		5	CG
Tanypodinae								
	ella eumorpha	2	0.38%	Yes	Larva		8	PR
Nilotanyı	<i>bus</i> sp.	2	0.38%	Yes	Larva		6	PR
Rheopel	<i>opia</i> sp.	1	0.19%	Yes	Pupa		11	PR
Thienem	annimyia Gr.	15	2.82%	No	Larva	Early Instar	5	PR
	Sam	ple Count 532						

Project ID: CB16LD

RAI No .: CB16LD007

Sta. Name: Lewis Creek Ravine Rep 1

Client ID: LewisBelRM1.8_2016R1 Date Coll.:

CB16LD007

8/12/2016

No. Jars: 2

RAI No.:

Taxonomic Name	Count	PRA	Unique	Stage	Qualifier	BI	Function
Other Non-Insect							
Hydrozoa							
Hydrozoa	3	0.56%	Yes	Unknown		5	PR
Planariidae							
Polycelis sp.	5	0.93%	Yes	Unknown		1	OM
Trepaxonemata							
Trepaxonemata	1	0.19%	Yes	Unknown		11	PR
Nemata							
Nemata	2	0.37%	Yes	Unknown		5	UN
Lumbriculidae							
Lumbriculidae	11	2.04%	Yes	Immature		4	CG
Sphaeriidae							
Sphaeriidae	1	0.19%	Yes	Unknown		8	CF
Crangonyctidae							
Crangonyx sp.	69	12.78%	Yes	Unknown		6	CG
Acari							
Acari	2	0.37%	Yes	Unknown		5	PR
Ephemeroptera							
Baetidae							
Baetis tricaudatus complex	108	20.00%	Yes	Larva		5	CG
Heptageniidae							
<i>Cinygma</i> sp.	5	0.93%	Yes	Larva		0	SC
Plecoptera							
Plecoptera							
Plecoptera	1	0.19%	No	Larva	Early Instar	11	PR
Chloroperlidae					-		
Sweltsa sp.	3	0.56%	Yes	Larva		0	PR
Nemouridae							
<i>Malenka</i> sp.	62	11.48%	Yes	Larva		1	SH
Perlodidae							
Kogotus sp.	5	0.93%	Yes	Larva		1	PR

Project ID: CB16LD

RAI No .: CB16LD007

Sta. Name: Lewis Creek Ravine Rep 1

Client ID: LewisBelRM1.8_2016R1 Date Coll.:

CB16LD007

8/12/2016

No. Jars: 2

RAI No.:

S

axonomic Name	Count	PRA	Unique	Stage	Qualifier	BI	Function
richoptera							
Glossosomatidae							
Glossosoma sp.	19	3.52%	Yes	Larva		0	SC
Glossosomatidae	15	2.78%	No	Pupa		0	SC
Hydropsychidae							
Hydropsyche sp.	53	9.81%	Yes	Larva		5	CF
Hydropsychidae	1	0.19%	No	Pupa		4	CF
Parapsyche sp.	31	5.74%	Yes	Larva		0	PR
Lepidostomatidae							
Lepidostoma sp.	6	1.11%	Yes	Larva		1	SH
Limnephilidae							
Psychoglypha sp.	1	0.19%	Yes	Larva		0	SH
Polycentropodidae							
Polycentropodidae	1	0.19%	Yes	Larva	Damaged	6	CF
Rhyacophilidae					-		
Rhyacophila sp.	4	0.74%	No	Larva	Early Instar	1	PR
Rhyacophila Betteni Gr.	1	0.19%	Yes	Larva	-	0	PR
Rhyacophila Brunnea/Vemna Gr.	6	1.11%	Yes	Larva		2	PR
coleoptera							
Elmidae							
Cleptelmis addenda	1	0.19%	Yes	Larva		4	CG
Elmidae	2	0.37%	No	Larva	Early Instar	4	CG
Heterlimnius corpulentus	1	0.19%	Yes	Adult	-	3	CG
<i>Lara</i> sp.	1	0.19%	Yes	Larva		1	SH
liptera							
Ceratopogonidae							
Forcipomyiinae	1	0.19%	Yes	Larva		6	PR
Empididae							
<i>Clinocera</i> sp.	1	0.19%	Yes	Larva		5	PR
Psychodidae							
Maruina sp.	16	2.96%	Yes	Larva		1	SC
Pericoma sp.	1	0.19%	Yes	Larva		4	CG
Psychodidae	5	0.93%	No	Pupa		4	CG
Simuliidae							
Simulium sp.	10	1.85%	No	Pupa		6	CF
Simulium sp.	41	7.59%	Yes	Larva		6	CF
Tipulidae							
Dicranota sp.	1	0.19%	Yes	Larva		3	PR
<i>Tipula</i> sp.	1	0.19%	Yes	Larva		4	SH

Project ID: CB16LD

RAI No.: CB16LD007

RAI No.:	CB16LD007		:	Sta. Name	e: Lew	is Creek Ravine Rep 1		
Client ID:	LewisBelRM1.8	_2016R1						
Date Coll.:	8/12/2016	No. Jars: 2	:	STORET	ID:			
Taxonomic Nar	me	Count	PRA	Unique	Stage	Qualifier	BI	Function
Chironomidae								
Chironomi	nae							
Polyp	edilum sp.	8	1.48%	Yes	Larva		6	SH
Chironomi	nae							
Micro	<i>psectra</i> sp.	16	2.96%	Yes	Larva		4	CG
Rheot	<i>tanytarsus</i> sp.	4	0.74%	Yes	Larva		6	CF
Stem	<i>pellinella</i> sp.	2	0.37%	Yes	Larva		4	CG
Orthocladi	inae							
Brillia	sp.	4	0.74%	Yes	Larva		4	SH
Coryn	noneura sp.	1	0.19%	Yes	Pupa		7	CG
Ortho	cladius lignicola	1	0.19%	Yes	Larva		11	CG
Parap	phaenocladius sp.	1	0.19%	Yes	Larva		4	CG
Tvete	enia sp.	1	0.19%	No	Pupa		5	CG
Tvete	nia Bavarica Gr.	4	0.74%	Yes	Larva		5	CG

Sample Count 540

Thursday, October 06, 2016

CB16LD002

Project ID: CB16LD

RAI No.: CB16LD002

Sta. Name: Lewis Creek Ravine Rep 2

Client ID: LewisBelRM Date Coll.: 8/12/2016

RAI No.:

LewisBelRM1.8_2016R2

No. Jars: 1

Taxonomic Name	Count	PRA	Unique	Stage	Qualifier	BI	Function
Other Non-Insect							
Hydrozoa							
Hydrozoa	1	0.31%	Yes	Unknown		5	PR
Nemata							
Nemata	1	0.31%	Yes	Unknown		5	UN
Enchytraeidae							
Enchytraeus sp.	2	0.61%	Yes	Unknown		4	CG
<i>Fridericia</i> sp.	2	0.61%	Yes	Unknown		11	CG
Naididae							
<i>Nai</i> s sp.	1	0.31%	Yes	Unknown		8	CG
Lumbriculidae							
Lumbriculidae	5	1.53%	Yes	Immature		4	CG
Sphaeriidae							
Sphaeriidae	1	0.31%	Yes	Unknown		8	CF
Planorbidae							
Menetus sp.	2	0.61%	Yes	Unknown		6	SC
Crangonyctidae							
Crangonyx sp.	85	25.99%	Yes	Unknown		6	CG
Acari							
Acari	7	2.14%	Yes	Unknown		5	PR
Ephemeroptera							
Baetidae							
Baetis tricaudatus complex	43	13.15%	Yes	Larva		5	CG
Heptageniidae							
Cinygma sp.	4	1.22%	Yes	Larva		0	SC
Plecoptera							
Nemouridae							
Malenka sp.	32	9.79%	Yes	Larva		1	SH
Zapada cinctipes	8	2.45%	Yes	Larva		3	SH
Perlodidae							
<i>Kogotus</i> sp.	2	0.61%	Yes	Larva		1	PR
Skwala sp.	1	0.31%	Yes	Larva		3	PR
Pteronarcyidae							
Pteronarcys sp.	1	0.31%	Yes	Larva	Early Instar	2	SH

Project ID: CB16LD

RAI No .: CB16LD002

Sta. Name: Lewis Creek Ravine Rep 2

Client ID: LewisBelRM1.8_2016R2 Date Coll.:

CB16LD002

8/12/2016

No. Jars: 1

RAI No.:

axonomic Name	Count	PRA	Unique	Stage	Qualifier	BI	Functior
Frichoptera							
Glossosomatidae							
Glossosoma sp.	10	3.06%	Yes	Larva		0	SC
Glossosomatidae	4	1.22%	No	Pupa		0	SC
Hydropsychidae							
Hydropsyche sp.	20	6.12%	Yes	Larva		5	CF
Hydropsychidae	1	0.31%	No	Pupa		4	CF
Hydropsychidae	9	2.75%	No	Larva	Early Instar	4	CF
Parapsyche sp.	3	0.92%	Yes	Larva		0	PR
Lepidostomatidae							
Lepidostoma sp.	8	2.45%	Yes	Larva		1	SH
Rhyacophilidae							
<i>Rhyacophila</i> sp.	1	0.31%	No	Larva	Early Instar	1	PR
Rhyacophila Betteni Gr.	1	0.31%	Yes	Larva		0	PR
Rhyacophila Brunnea/Vemna Gr.	3	0.92%	Yes	Larva		2	PR
Coleoptera							
Elmidae							
Heterlimnius corpulentus	2	0.61%	Yes	Larva		3	CG
Narpus concolor	1	0.31%	Yes	Larva		2	CG
Diptera							
Ceratopogonidae							
Forcipomyiinae	4	1.22%	Yes	Larva		6	PR
Dixidae							
Dixa sp.	2	0.61%	Yes	Larva		1	CG
Simuliidae							
Simulium sp.	2	0.61%	No	Pupa		6	CF
Simulium sp.	6	1.83%	Yes	Larva		6	CF
Tipulidae							
<i>Tipula</i> sp.	3	0.92%	Yes	Larva		4	SH
Chironomidae							
Chironominae							
Microtendipes sp.	1	0.31%	Yes	Larva		6	CF
Polypedilum sp.	6	1.83%	Yes	Larva		6	SH
Polypedilum sp.	2	0.61%	No	Pupa		6	SH
Chironominae							
Micropsectra sp.	17	5.20%	Yes	Larva		4	CG
Micropsectra sp.	3	0.92%	No	Pupa		4	CG
Rheotanytarsus sp.	7	2.14%	Yes	Larva		6	CF
Orthocladiinae							
<i>Brillia</i> sp.	5	1.53%	Yes	Larva		4	SH
Eukiefferiella Claripennis Gr.	1	0.31%	Yes	Larva		8	CG
Limnophyes sp.	3	0.92%	Yes	Larva		8	CG
Parametriocnemus sp.	1	0.31%	Yes	Larva		5	CG
Tvetenia Bavarica Gr.	3	0.92%	Yes	Larva		5	CG

Project ID: CB16LD RAI No .: CB16LD003

Sta. Name: Newport Tributary Rep 1

Client ID: NewpBelRM0.0_2016R1 Date Coll.:

CB16LD003

8/17/2016

No. Jars: 4

RAI No.:

ther Nen Incest							Function
Other Non-Insect							
Trepaxonemata							
Trepaxonemata	1	0.19%	Yes	Unknown		11	PR
Nemata							
Nemata	1	0.19%	Yes	Unknown		5	UN
Enchytraeidae							
Enchytraeus sp.	8	1.54%	Yes	Unknown		4	CG
<i>Henlea</i> sp.	1	0.19%	Yes	Unknown		11	UN
Mesenchytraeus sp.	4	0.77%	Yes	Unknown		4	CG
Naididae							
Naididae	1	0.19%	Yes	Immature		8	CG
Naididae							
Tubificinae	5	0.97%	Yes	Immature		11	CG
Lumbriculidae							
Lumbriculidae	17	3.28%	Yes	Immature		4	CG
Sphaeriidae							
Sphaeriidae	11	2.12%	Yes	Unknown		8	CF
Physidae							
Physidae	3	0.58%	Yes	Unknown		8	SC
Planorbidae							
<i>Menetus</i> sp.	1	0.19%	Yes	Unknown		6	SC
Amphipoda							
Amphipoda	1	0.19%	No	Unknown	Damaged	4	CG
Crangonyctidae					-		
Crangonyx sp.	52	10.04%	Yes	Unknown		6	CG
Acari							
Acari	5	0.97%	Yes	Unknown		5	PR
phemeroptera							
Baetidae							
<i>Baetis</i> sp.	3	0.58%	No	Larva	Early Instar	5	CG
Baetis tricaudatus complex	20	3.86%	Yes	Larva		5	CG
Plecoptera	-					-	
Nemouridae							
Malenka sp.	106	20.46%	Yes	Larva		1	SH
Nemouridae	21	4.05%	No	Larva	Early Instar	2	SH
Zapada cinctipes	80	15.44%	Yes	Larva		3	SH
richoptera						-	
Rhyacophilidae							
Rhyacophila Betteni Gr.	1	0.19%	Yes	Larva		0	PR
Rhyacophila Brunnea/Vemna Gr.	9	1.74%	Yes	Larva		2	PR
Coleoptera	-					-	
Elmidae							
Narpus concolor	1	0.19%	Yes	Larva		2	CG

CB16LD003

Project ID: CB16LD

RAI No .: CB16LD003

Sta. Name: Newport Tributary Rep 1

Client ID: Date Coll.: 8/17/2016

RAI No.:

NewpBelRM0.0_2016R1

No. Jars: 4

STORET ID:	
------------	--

Taxonomic Name	Count	PRA	Unique	Stage	Qualifier	BI	Function
Diptera							
Dixidae							
<i>Dixa</i> sp.	1	0.19%	Yes	Larva		1	CG
Empididae							
Neoplasta sp.	2	0.39%	Yes	Larva		5	PR
Simuliidae							
Simulium sp.	1	0.19%	No	Pupa		6	CF
Simulium sp.	14	2.70%	Yes	Larva		6	CF
Tipulidae							
Antocha monticola	9	1.74%	Yes	Larva		3	CG
Antocha monticola	3	0.58%	No	Pupa		3	CG
Dicranota sp.	1	0.19%	Yes	Larva		3	PR
Molophilus sp.	1	0.19%	Yes	Larva		4	SH
<i>Tipula</i> sp.	4	0.77%	Yes	Larva		4	SH
Chironomidae							
Chironominae							
Polypedilum sp.	2	0.39%	Yes	Larva		6	SH
Orthocladiinae							
<i>Brillia</i> sp.	11	2.12%	Yes	Larva		4	SH
Cricotopus sp.	2	0.39%	No	Pupa		7	SH
Cricotopus (Cricotopus) sp.	14	2.70%	Yes	Larva		7	SH
<i>Eukiefferiella</i> sp.	5	0.97%	No	Pupa		8	CG
Eukiefferiella Claripennis Gr.	17	3.28%	Yes	Larva		8	CG
Eukiefferiella Coerulescens Gr.	1	0.19%	Yes	Larva		8	CG
Eukiefferiella tirolensis	11	2.12%	Yes	Larva		8	CG
Orthocladius sp.	60	11.58%	Yes	Larva		6	CG
Parametriocnemus sp.	1	0.19%	Yes	Larva		5	CG
Thienemanniella sp.	1	0.19%	Yes	Larva		6	CG
Tvetenia Bavarica Gr.	3	0.58%	Yes	Larva		5	CG
Tanypodinae							
Brundiniella eumorpha	1	0.19%	Yes	Larva		8	PR
Thienemannimyia Gr.	1	0.19%	Yes	Larva	Early Instar	5	PR
Sample Co	unt 518				-		

Project ID: CB16LD

RAI No.: CB16LD004

Sta. Name:

Newport Tributary - Above pedestrian bridge and new riffle (pre-CIP) Rep 1

Client ID: NewpBeIRM0.25_2016R1 Date Coll.: 8/22/2016 No. Jars: 5

CB16LD004

RAI No.:

STORET ID:	

Taxonomic Name	Count	PRA	Unique	Stage	Qualifier	BI	Function
Oligochaeta							
Enchytraeidae							
Enchytraeus sp.	7	1.40%	Yes	Unknown		4	CG
<i>Fridericia</i> sp.	3	0.60%	Yes	Unknown		11	CG
Lumbriculidae							
Lumbriculidae	7	1.40%	Yes	Immature		4	CG
Sphaeriidae							
Sphaeriidae	7	1.40%	Yes	Unknown		8	CF
Planorbidae							
Promenetus sp.	1	0.20%	Yes	Unknown		6	SC
Amphipoda							
Amphipoda	37	7.40%	Yes	Unknown	Damaged	4	CG
Acari					•		
Acari	8	1.60%	Yes	Unknown		5	PR
Ephemeroptera							
Baetidae							
Baetis Rhodani Gr.	7	1.40%	Yes	Larva	Damaged	11	CG
Plecoptera							
Nemouridae							
Malenka sp.	31	6.20%	Yes	Larva		1	SH
Nemouridae	61	12.20%	No	Larva	Damaged	2	SH
Trichoptera	01	12.2070	110	Luiva	Dunlageu	-	on
Glossosomatidae							
Glossosoma sp.	3	0.60%	Yes	Larva		0	SC
Glossosomatidae	21	4.20%	No	Pupa		0	SC
Hydropsychidae	21	4.20 /0	NU	гира		U	30
Hydropsyche sp.	1	0.20%	Yes	Longo		5	CF
Parapsyche sp.		0.20% 1.80%		Larva		5 0	PR
	9	1.00%	Yes	Larva		U	PK
Rhyacophilidae Rhyacophila sp.	•	0.400/	Na	Lamo	Downowed		
Rhyacophila Sp.	2	0.40%	No	Larva	Damaged	1	PR
Rhyacophila Brunnea/Vemna Gr.	1	0.20%	Yes	Larva		0	PR
	24	4.80%	Yes	Larva		2	PR
Diptera							
Empididae	_					_	
Neoplasta sp.	1	0.20%	Yes	Larva		5	PR
Simuliidae				_			
Simulium sp.	200	40.00%	Yes	Larva		6	CF
Simulium sp.	29	5.80%	No	Pupa		6	CF
Tipulidae							
Antocha monticola	5	1.00%	Yes	Larva		3	CG
Chironomidae							
Orthocladiinae							
<i>Brillia</i> sp.	34	6.80%	Yes	Larva		4	SH
Chaetocladius sp.	1	0.20%	Yes	Larva		6	CG
Sample Cou	nt 500						

Project ID: CB16LD

RAI No.: CB16LD005

RAI No.: Sta. Name: Coal Creek - Above I-405 Weirs(Sound CB16LD005 Transit Mitigation Site) Rep 1 Client ID: CoalBelRM0.8_2016R1 Date Coll .: No. Jars: 4 STORET ID: 8/23/2016 Stage Taxonomic Name Count PRA Unique Qualifier BI Function Other Non-Insect Trepaxonemata Trepaxonemata 7 PR 1.29% Yes Unknown 11 Nemata Nemata 0.18% Unknown 5 UN 1 Yes Lumbriculidae Lumbriculidae CG 1 0.18% Yes Immature 4 Crangonyctidae Crangonyx sp. 3 0.55% Yes Unknown 6 CG Ostracoda Ostracoda 17 3.13% Yes Unknown 8 CG Acari Acari 4 0.74% Yes Unknown 5 PR Ephemeroptera Baetidae Baetis tricaudatus complex 141 25.92% 5 CG Yes Larva Plecoptera Nemouridae Malenka sp. 5 0.92% SH Yes Larva 1 Nemouridae 0.18% Damaged 2 SH 1 No Larva Zapada cinctipes 9 1.65% Yes Larva 3 SH Perlodidae Skwala sp. PR 2 0.37% Yes Larva 3 Trichoptera Hydropsychidae Hydropsyche sp. 73 13.42% Yes Larva 5 CF Hydroptilidae Hydroptila sp. 16 2.94% Yes Larva 6 PH Hydroptilidae PH 10 1.84% No Pupa 4 Rhyacophilidae Rhyacophila Brunnea/Vemna Gr. 3 0.55% Yes Larva 2 PR Coleoptera Elmidae Heterlimnius corpulentus 2 0.37% Yes Adult 3 CG Heterlimnius corpulentus 35 6.43% No Larva 3 CG Narpus concolor 5 0.92% Yes Larva 2 CG Diptera Empididae Chelifera sp. 1 0.18% Yes Larva 5 PR Simuliidae Simulium sp. 136 25.00% Yes Larva 6 CF Simulium sp. 2.57% 6 CF 14 No Pupa Tipulidae Antocha monticola 3 0.55% Yes Larva 3 CG Dicranota sp. 2 0.37% 3 PR Yes Larva Tipula sp. 0.18% 4 SH 1 Yes Larva

Project ID: CB16LD

RAI No.: CB16LD005

RAI No.: Client ID:	CB16LD005 CoalBelRM0.8_20 ²	16R1		Sta. Name		I Creek - Above I-405 nsit Mitigation Site) Re		
Date Coll.:	8/23/2016	No. Jars: 4		STORET	ID:			
Taxonomic Nam	ne	Count	PRA	Unique	Stage	Qualifier	BI	Function
Chironomidae								
Chironomin	ae							
Microte	endipes sp.	2	0.37%	Yes	Larva		6	CF
Phaen	opsectra sp.	16	2.94%	Yes	Larva		7	SC
Chironomin	ae							
Rheota	<i>anytarsus</i> sp.	2	0.37%	No	Pupa		6	CF
Rheota	<i>anytarsus</i> sp.	1	0.18%	Yes	Larva		6	CF
Tanyta	irsini	2	0.37%	No	Pupa	Damaged	6	CF
Tanyta	arsus sp.	12	2.21%	Yes	Larva		6	CF
Orthocladiir	nae							
Brillia s	sp.	1	0.18%	Yes	Larva		4	SH
Eukiefi	feriella sp.	4	0.74%	No	Pupa		8	CG
Eukieff	feriella Claripennis Gr.	2	0.37%	Yes	Larva		8	CG
Eukieff	feriella Devonica Gr.	5	0.92%	Yes	Larva		8	CG
Eukiefi	feriella tirolensis	1	0.18%	Yes	Larva		8	CG
Tveten	ia Bavarica Gr.	2	0.37%	Yes	Larva		5	CG
Tanypodina	e							
	anypus sp.	1	0.18%	Yes	Larva		7	PR
Thiene	emannimyia Gr.	1	0.18%	Yes	Larva	Early Instar	5	PR

Sample Count 544

Project ID: CB16LD

RAI No.: CB16LD006

RAI No.: CB16LD006				Sta. Name		w East Tributary(lea	ky dumpster s	ite)
Client ID: YarrowEastTribBell		0.3_2016R1			Rep 1			
Date Coll.:	8/25/2016	No. Jars: 4		STORET I	D:			
Taxonomic Name		Count	PRA	Unique	Stage	Qualifier	BI	Functior
Other Non-Insect								
Trepaxonema	ata							
Trepaxo	nemata	69	14.23%	Yes	Unknown		11	PR
Nemata								
Nemata		6	1.24%	Yes	Unknown		5	UN
Enchytraeida								
Enchytra		40	8.25%	Yes	Unknown		4	CG
Friderici	a sp.	1	0.21%	Yes	Unknown		11	CG
Mesenci	hytraeus sp.	1	0.21%	Yes	Unknown		4	CG
Naididae								
Naididae	9	5	1. 03 %	Yes	Immature		8	CG
Naididae								
Telmato	drilus vejdovskyi	1	0.21%	Yes	Unknown		11	CG
Naididae								
Tubificin	ae	1	0.21%	No	Immature		11	CG
Lumbriculida	e							
Lumbric		37	7.63%	Yes	Immature		4	CG
Sphaeriidae		0.	1100 / 0		minataro		•	
Sphaerii	dae	9	1.86%	Yes	Unknown		8	CF
Crangonyctid		5	1.00 /0	165	UTIKITOWIT		0	UF
Crangonycuo		227	46 900/	Vee	Linknown		c	<u> </u>
	iyx sp.	227	46.80%	Yes	Unknown		6	CG
Acari							_	
Acari		10	2.06%	Yes	Unknown		5	PR
Ephemeroptera								
Baetidae								
Baetis tr	icaudatus complex	58	11.96%	Yes	Larva		5	CG
Plecoptera								
Nemouridae								
Malenka	rsp.	1	0.21%	Yes	Larva		1	SH
Trichoptera								
Hydropsychic	lae							
Hydrops		1	0.21%	Yes	Larva		5	CF
Rhyacophilid	ae							
	ohila Brunnea/Vemna Gr.	1	0.21%	Yes	Larva		2	PR
Diptera								
Ceratopogon	idae							
Forcipor		7	1.44%	Yes	Larva		6	PR
Psychodidae	-	•	114470	100	Luiva		Ŭ	
Pericom		1	0.21%	Yes	Larva		4	CG
Tipulidae	u op.	I	U.Z 1 70	162	Laiva		4	66
Limonia	sn	•	0 440/	V.	Lorre		<u>^</u>	e
	əp.	2	0.41%	Yes	Larva		6	SH
Chironomidae								
Chironomina								
Tanytars		1	0.21%	Yes	Larva		6	CF
Orthocladiina								
Limnoph		4	0.82%	Yes	Larva		8	CG
Orthocla	diinae	2	0.41%	Yes	Larva	Early Instar	6	CG

Таха	Listing	9		Proje RAI I	ect ID: No.:	CB16LD CB16LD006		
RAI No.: Client ID:	CB16LD006 YarrowEastTribB	elRM0.3_2016R1		Sta. Name	: Yarro Rep '	w East Tributary(le 1	eaky dumpster s	ite)
Date Coll.:	8/25/2016	No. Jars: 4		STORET I	D:			
Taxonomic Name		Count	PRA	Unique	Stage	Qualifier	BI	Function

Sample Count 485

Project ID:	CB16LD
RAI No.:	CB16LD001
Sta. Name:	Coal Creek below Parkway -Metro Access Rep 1
Client ID:	CoalBelRM1.8_2016R1
STORET ID	
Coll. Date:	8/11/2016
Latitude:	47.5592 Longitude: -122.1699

Abundance Measures

Sample Count:	532		
Sample Abundance:	1,995.00	26.67% of sample used	
Coll. Procedure:	Surber		
Sample Notes:		BelRM1.8_2016R1_JarA, _JarB, CoalBelRM1.8_2016R1	_JarC

Taxonomic Composition

Category	R	Α	PRA	
Terrestrial				
Other Non-Insect	5	36	6.77%	
Oligochaeta	1	3	0.56%	
Odonata				
Ephemeroptera	1	48	9.02%	
Plecoptera	4	66	12.41%	
Heteroptera				
Megaloptera				
Neuroptera				
Trichoptera	6	169	31.77%	
Lepidoptera				
Coleoptera	2	61	11.47%	
Diptera	4	102	19.17%	
Chironomidae	11	47	8.83%	

Dominant Taxa

Category	Α	PRA
Simulium	75	14.10%
Hydropsyche	65	12.22%
Hydroptilidae	59	11.09%
Heterlimnius corpulentus	55	10.34%
Baetis tricaudatus complex	48	9.02%
Malenka	32	6.02%
Zapada cinctipes	25	4.70%
Antocha monticola	21	3.95%
Hydroptila	17	3.20%
Glossosomatidae	17	3.20%
Thienemannimyia Gr.	15	2.82%
Eukiefferiella Claripennis Gr.	12	2.26%
Crangonyx	12	2.26%
Acari	12	2.26%
Rhyacophila Brunnea/Vemna Gr.	9	1.69%

Functional Composition

Category	R	Α	PRA
Predator	9	55	10.34%
Parasite			
Collector Gatherer	13	174	32.71%
Collector Filterer	4	143	26.88%
Macrophyte Herbivore			
Piercer Herbivore	1	76	14.29%
Xylophage			
Scraper	2	18	3.38%
Shredder	5	66	12.41%
Omnivore			
Unknown			

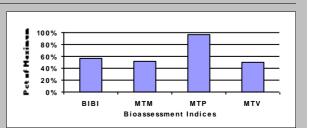
Pct

29 96.67% None

28 56.00%

Rating

Score


Montana Revised Valleys/Foothills (Bollman 1998) 9 50.00% Moderate

Montana DEQ Mountains (Bukantis 1998) 11 52.38% Moderate

li S

Metric Values and Scores

Metric Values and Scores	
<i>l</i> etric	Value
Composition	
Composition Taxa Richness Pichness Pichness Pichness PT Percent UI Non-Insect Abundance UI Non-Insect Richness UI Non-Insect Percent Digochaeta+Hirudinea Percent Saetidae/Ephemeroptera 4vdropsvchidae/Trichoptera Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent	34 1 4 6 11 53.20% 39 6 7.33% 0.56% 1.000 0.385 14.10% 26.32% 37.41%
Dominant Taxa (10) Percent	77.82%
Diversity Shannon H (loge) Shannon H (log2) Aargalef D Simpson D Evenness	2.743 3.957 5.538 0.094 0.057
Function	
Predator Richness Predator Percent Filterer Richness Tilterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer	9 10.34% 4 26.88% 59.59% 15.79% 0.126 0.112
Habit	2
Burrower Richness Surrower Percent Swimmer Richness Swimmer Percent Dinger Richness Dinger Percent	2 0.75% 1 9.02% 13 73.68%
Characteristics	
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Nir Breather Richness Nir Breather Percent <i>Voltinism</i>	0 0.00% 1 0.19% 3 5.08%
Jnivoltine Richness Semivoltine Richness Aultivoltine Percent	15 2 25.75%
Tolerance	
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Aetals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent dilsenhoff Biotic Index ntolerant Percent Supertolerant Percent CTQa	4 5.64% 0 0.00% 3.916 0 3.20% 4.272 13.53% 4.51% 73.818

Thursday, October 06, 2016

Bioassessment Indices

B-IBI (Karr et al.)

Montana DEQ Plains (Bukantis 1998)

BioIndex Description

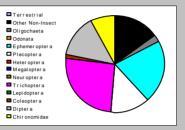
BIBI

MTP

MTV

MTM

Project ID:	CB16LD		
RAI No.:	CB16LD007		
Sta. Name:	Lewis Creek Ra	avine Rep 1	
Client ID:	LewisBelRM1.8	3_2016R1	
STORET ID			
Coll. Date:	8/12/2016		
Latitude:	47.5566	Longitude:	-122.1


Abundance Measures

Sample Count:	540		
Sample Abundance:	1,350.00	40.00% of sample used	
Coll. Procedure:	Surber		
Sample Notes:	Individual Jar IDs: LewisBelRM1.8_2016R1_JarA, LewisBelRM1.8_2016R1_JarB		

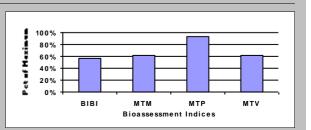
087

Taxonomic Composition

Category	R	Α	PRA	
Terrestrial				
Other Non-Insect	7	83	15.37%	
Oligochaeta	1	11	2.04%	
Odonata				
Ephemeroptera	2	113	20.93%	
Plecoptera	3	71	13.15%	
Heteroptera				
Megaloptera				
Neuroptera				
Trichoptera	8	138	25.56%	
Lepidoptera				
Coleoptera	3	5	0.93%	
Diptera	7	77	14.26%	
Chironomidae	9	42	7.78%	

Dominant Taxa

Category	Α	PRA
Baetis tricaudatus complex	108	20.00%
Crangonyx	69	12.78%
Malenka	62	11.48%
Hydropsyche	53	9.81%
Simulium	51	9.44%
Parapsyche	31	5.74%
Glossosoma	19	3.52%
Micropsectra	16	2.96%
Maruina	16	2.96%
Glossosomatidae	15	2.78%
Lumbriculidae	11	2.04%
Polypedilum	8	1.48%
Rhyacophila Brunnea/Vemna Gr.	6	1.11%
Lepidostoma	6	1.11%
Polycelis	5	0.93%


Functional Composition

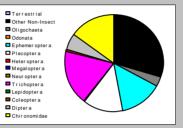
Category	R	А	PRA
Predator	11	60	11.11%
Parasite			
Collector Gatherer	12	224	41.48%
Collector Filterer	5	111	20.56%
Macrophyte Herbivore			
Piercer Herbivore			
Xylophage			
Scraper	3	55	10.19%
Shredder	7	83	15.37%
Omnivore	1	5	0.93%
Unknown	1	2	0.37%

Metric Values and Scores

Metric Values and Scores	
Metric	Value
Composition	
Taxa Richness E Richness P Richness T Richness EPT Richness EPT Percent All Non-Insect Abundance All Non-Insect Richness All Non-Insect Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera	40 2 3 8 13 59.63% 94 8 17.41% 2.04% 0.956 0.616
Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent <i>Diversity</i> Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness	20.00% 32.78% 44.26% 81.48% 2.657 3.833 6.274 0.106 0.058
Function Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper/Shredder Percent Scraper/Shredder Percent Scraper/Straper+Filterer	11 11.11% 5 20.56% 62.04% 25.56% 0.495 0.331
Habit	
Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent Characteristics	4 4.07% 1 20.00% 17 52.41%
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent Voltinism	2 1.11% 2 1.67% 4 4.44%
Univoltine Richness Semivoltine Richness Multivoltine Percent <i>Tolerance</i>	21 4 8.89%
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent CTQa	3 2.41% 1 3.52% 3.352 1 0.00% 3.698 33.33% 0.19% 76.586

Bioassessment Indices

BioIndex	Description	Score	Pct	Rating
BIBI	B-IBI (Karr et al.)	28	56.00%	
MTP	Montana DEQ Plains (Bukantis 1998)	28	93.33%	None
MTV	Montana Revised Valleys/Foothills (Bollman 1998)	11	61.11%	Slight
MTM	Montana DEQ Mountains (Bukantis 1998)	13	61.90%	Slight

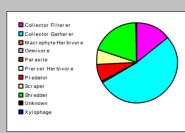

Project ID:	CB16LD		
RAI No.:	CB16LD002		
Sta. Name:	Lewis Creek Ra	avine Rep 2	
Client ID:	LewisBelRM1.8	3_2016R2	
STORET ID			
Coll. Date:	8/12/2016		
Latitude:	47.5566	Longitude:	-122.1087

Abundance Measures

Sample Count:	327		
Sample Abundance:	327.00	100.00% of sample used	
Coll. Procedure:	Surber		
Sample Notes:	Individual Jar ID: Lev	wisBelRM1.8_2016R2_JarA	

Taxonomic Composition

	•			
Category	R	Α	PRA	
Terrestrial				
Other Non-Insect	6	97	29.66%	
Oligochaeta	4	10	3.06%	
Odonata				
Ephemeroptera	2	47	14.37%	
Plecoptera	5	44	13.46%	
Heteroptera				
Megaloptera				
Neuroptera				
Trichoptera	6	60	18.35%	
Lepidoptera				
Coleoptera	2	3	0.92%	
Diptera	4	17	5.20%	
Chironomidae	9	49	14 98%	



Dominant Taxa

Category	А	PRA
Crangonyx	85	25.99%
Baetis tricaudatus complex	43	13.15%
Malenka	32	9.79%
Micropsectra	20	6.12%
Hydropsyche	20	6.12%
Hydropsychidae	10	3.06%
Glossosoma	10	3.06%
Zapada cinctipes	8	2.45%
Simulium	8	2.45%
Polypedilum	8	2.45%
Lepidostoma	8	2.45%
Rheotanytarsus	7	2.14%
Acari	7	2.14%
Lumbriculidae	5	1.53%
Brillia	5	1.53%

Functional Composition

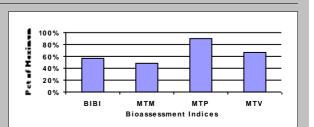
Category	R	Α	PRA
Predator	8	23	7.03%
Parasite			
Collector Gatherer	14	171	52.29%
Collector Filterer	5	47	14.37%
Macrophyte Herbivore			
Piercer Herbivore			
Xylophage			
Scraper	3	20	6.12%
Shredder	7	65	19.88%
Omnivore			
Unknown	1	1	0.31%

Pct

27 90.00% None

28 56.00%

10 47.62% Moderate


Rating

Score

Montana Revised Valleys/Foothills (Bollman 1998) 12 66.67% Slight

Metric Values and Scores

Metric Values and Scores	
Metric	Value
Composition	
Composition Taxa Richness E Richness P Richness T Richness EPT Richness EPT Richness EPT Percent All Non-Insect Abundance All Non-Insect Abundance All Non-Insect Richness All Non-Insect Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hvdrosvchidae/Trichoptera Dominance Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent	38 2 5 6 13 46.18% 107 10 32.72% 3.06% 0.915 0.550 25.99% 39.14% 48.93% 74.62%
Diversity Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness Function	2.719 3.923 6.468 0.119 0.057
Predator Richness Predator Percent Filterer Richness Filterer Richness Filterer Percent Collector Percent Scraper/Filterer Scraper/Filterer Habit	8 7.03% 5 14.37% 66.67% 25.99% 0.426 0.299
Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent <i>Characteristics</i> Cold Stenotherm Richness	3 3.98% 2 13.76% 16 36.39%
Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent <i>Voltinism</i>	1.22% 3 3.36% 1 0.92%
Univoltine Richness Semivoltine Richness Multivoltine Percent <i>Tolerance</i>	20 4 17.13%
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent CTQa	2 2.45% 1 3.06% 3.025 1 0.92% 4.265 22.02% 1.83% 80.714

Thursday, October 06, 2016

Bioassessment Indices

B-IBI (Karr et al.)

Montana DEQ Plains (Bukantis 1998)

Montana DEQ Mountains (Bukantis 1998)

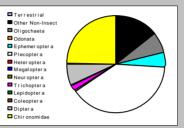
BioIndex Description

BIBI

MTP

MTV

MTM

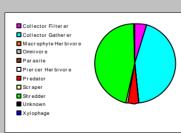

Project ID:	CB16LD		
RAI No.:	CB16LD003		
Sta. Name:	Newport Tribu	tary Rep 1	
Client ID:	NewpBelRM0.0_2016R1		
STORET ID			
Coll. Date:	8/17/2016		
Latitude:	47.5662	Longitude:	-122.1801

Abundance Measures

Sample Count:	518	
Sample Abundance:	1,036.00 50.00% of sample used	
Coll. Procedure:	Surber	
Sample Notes:	Individual Jar IDs: NewpBelRM0.0_2016R1_JarA, NewpBelRM0.0_2016R1_JarB, NewpBelRM0.0_2016R1_JarC,	

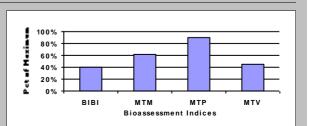
Taxonomic Composition

. .	_		
Category	R	Α	PRA
Terrestrial			
Other Non-Insect	7	75	14.48%
Oligochaeta	6	36	6.95%
Odonata			
Ephemeroptera	1	23	4.44%
Plecoptera	2	207	39.96%
Heteroptera			
Megaloptera			
Neuroptera			
Trichoptera	2	10	1.93%
Lepidoptera			
Coleoptera	1	1	0.19%
Diptera	7	36	6.95%
Chironomidae	12	130	25.10%



Dominant Taxa

Category	Α	PRA
Malenka	106	20.46%
Zapada cinctipes	80	15.44%
Orthocladius	60	11.58%
Crangonyx	52	10.04%
Nemouridae	21	4.05%
Baetis tricaudatus complex	20	3.86%
Lumbriculidae	17	3.28%
Eukiefferiella Claripennis Gr.	17	3.28%
Simulium	15	2.90%
Cricotopus (Cricotopus)	14	2.70%
Antocha monticola	12	2.32%
Sphaeriidae	11	2.12%
Eukiefferiella tirolensis	11	2.12%
Brillia	11	2.12%
Rhyacophila Brunnea/Vemna Gr.	9	1.74%


Functional Composition

Category	R	А	PRA
Predator	8	21	4.05%
Parasite			
Collector Gatherer	17	224	43.24%
Collector Filterer	2	26	5.02%
Macrophyte Herbivore			
Piercer Herbivore			
Xylophage			
Scraper	2	4	0.77%
Shredder	7	241	46.53%
Omnivore			
Unknown	2	2	0.39%

Metric Values and Sco

Metric Values and Scores	
Metric	Value
Composition	
Taxa Richness E Richness P Richness EPT Richness EPT Richness EPT Percent All Non-Insect Abundance All Non-Insect Richness All Non-Insect Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hvdropsvchidae/Trichoptera Dominance	38 1 2 5 46.33% 111 13 21.43% 6.95% 1.000 0.000
Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent Diversity Shannon H (loge) Shannon H (log2) Marqalef D Simpson D	35.91% 47.49% 77.61% 2.655 3.830 5.989 0.110
Evenness Function	0.059
Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper-Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer Habit	8 4.05% 2 5.02% 48.26% 47.30% 0.154 0.133
Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent Characteristics	5 6.76% 2 4.63% 8 50.39%
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent Voltinism	0 0.00% 2 0.58% 4 3.47%
Univoltine Richness Semivoltine Richness Multivoltine Percent <i>Tolerance</i>	18 1 26.45%
Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent CTQa	5 6.76% 0 0.00% 3.085 0 0.58% 4.129 26.83% 9.65% 86.875

Bioassessment Indices

BioIndex	Description	Score	Pct	Rating
BIBI	B-IBI (Karr et al.)	20	40.00%	
MTP	Montana DEQ Plains (Bukantis 1998)	27	90.00%	None
MTV	Montana Revised Valleys/Foothills (Bollman 1998)	8	44.44%	Moderate
MTM	Montana DEQ Mountains (Bukantis 1998)	13	61.90%	Slight

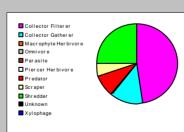
Project ID:	B16LD
RAI No.:	B16LD004
Sta. Name:	lewport Tributary - Above pedestrian bridge and new riffle (pre-CIP) Rep 1
Client ID:	lewpBeIRM0.25_2016R1
STORET ID	
Coll. Date:	/22/2016
Latitude:	7.5657 Longitude: -122.1797

Abundance Measures

Sample Count:	500	
Sample Abundance:	1,363.64	36.67% of sample used
Coll. Procedure:	Surber	
Sample Notes:	Individual Jar IDs: NewpBelRM0.25_2016R1_JarA, NewpBelRM0.25_2016R1_JarB, NewpBelRM0.25_2016R1_JarC,	

Taxonomic Composition

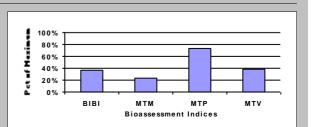
Category	R	Α	PRA
Terrestrial			
Other Non-Insect	4	53	10.60%
Oligochaeta	3	17	3.40%
Odonata			
Ephemeroptera	1	7	1.40%
Plecoptera	1	92	18.40%
Heteroptera			
Megaloptera			
Neuroptera			
Trichoptera	5	61	12.20%
Lepidoptera			
Coleoptera			
Diptera	3	235	47.00%
Chironomidae	2	35	7.00%


Terrestrial Other Non-Insect Oigochaeta Odonata Ephemeroptera Plecoptera Heteroptera Megaloptera Trichoptera	
Trichoptera	
Coleoptera Diptera Chironomidae	

Dominant Taxa

Category	Α	PRA
Simulium	229	45.80%
Nemouridae	61	12.20%
Amphipoda	37	7.40%
Brillia	34	6.80%
Malenka	31	6.20%
Rhyacophila Brunnea/Vemna Gr.	24	4.80%
Glossosomatidae	21	4.20%
Parapsyche	9	1.80%
Acari	8	1.60%
Sphaeriidae	7	1.40%
Lumbriculidae	7	1.40%
Enchytraeus	7	1.40%
Baetis Rhodani Gr.	7	1.40%
Antocha monticola	5	1.00%
Fridericia	3	0.60%

Functional Composition


Category	R	Α	PRA
Predator	5	45	9.00%
Parasite			
Collector Gatherer	7	67	13.40%
Collector Filterer	3	237	47.40%
Macrophyte Herbivore			
Piercer Herbivore			
Xylophage			
Scraper	2	25	5.00%
Shredder	2	126	25.20%
Omnivore			
Unknown			

S

Metric Values and Scores

vietric values and Scores	
<i>N</i> etric	Value
Composition	
Taxa Richness	19
E Richness P Richness	1 1
Richness	5
EPT Richness EPT Percent	7 32.00%
All Non-Insect Abundance	52.00 % 70
All Non-Insect Richness	7
All Non-Insect Percent Digochaeta+Hirudinea Percent	14.00% 3.40%
Baetidae/Ephemeroptera	1.000
Hydropsychidae/Trichoptera	0.164
Dominance	
Dominant Taxon Percent Dominant Taxa (2) Percent	45.80% 58.00%
Dominant Taxa (3) Percent	65.40%
Dominant Taxa (10) Percent	92.20%
Diversity	
Shannon H (loge)	1.820
Shannon H (log2) Margalef D	2.626 3.021
Simpson D	0.295
Evenness	0.086
Function	
Predator Richness Predator Percent	5 9.00%
Filterer Richness	3
Filterer Percent Collector Percent	47.40%
Scraper+Shredder Percent	60.80% 30.20%
Scraper/Filterer	0.105
Scraper/Scraper+Filterer	0.095
Habit	
Burrower Richness Burrower Percent	3 8.40%
Swimmer Richness	1
Swimmer Percent Clinger Richness	1.40% 8
Clinger Percent	77.40%
Characteristics	
Cold Stenotherm Richness	0
Cold Stenotherm Percent	0.00%
Hemoglobin Bearer Richness Hemoglobin Bearer Percent	1 0.20%
Air Breather Richness	1
Air Breather Percent	1.00%
/oltinism	
Jnivoltine Richness Semivoltine Richness	11 2
Aultivoltine Percent	8.60%
Tolerance	
Sediment Tolerant Richness	3
Sediment Tolerant Percent Sediment Sensitive Richness	2.60% 1
Sediment Sensitive Percent	0.60%
Metals Tolerance Index	4.109
Pollution Sensitive Richness Pollution Tolerant Percent	0 0.20%
Hilsenhoff Biotic Index	4.184
ntolerant Percent Supertolerant Percent	30.40% 1.40%
CTQa	81.615

Bioassessment Indices

BioIndex	Description	Score	Pct	Rating
BIBI	B-IBI (Karr et al.)	18	36.00%	
MTP	Montana DEQ Plains (Bukantis 1998)	22	73.33%	Slight
MTV	Montana Revised Valleys/Foothills (Bollman 1998)	7	38.89%	Moderate
MTM	Montana DEQ Mountains (Bukantis 1998)	5	23.81%	Moderate

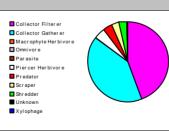
Project ID:	CB16LD	
RAI No.:	CB16LD005	
Sta. Name:	Coal Creek - Ab	ove I-405 Weirs(Sound Transit Mitigation Site) Rep 1
Client ID:	CoalBelRM0.8_	2016R1
STORET ID		
Coll. Date:	8/23/2016	
Latitude:	47.566	Longitude: -122.1773

Abundance Measures

Sample Count:	544	
Sample Abundance:	8,160.00	6.67% of sample used
Coll. Procedure:	Surber	
Sample Notes:	Individual Jar IDs: CoalB CoalBelRM0.8_2016R1_	elRM0.8_2016R1_JarA, _JarB, CoalBelRM0.8_2016R1_JarC,

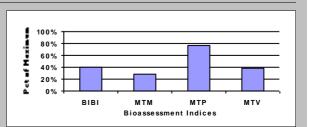
Taxonomic Composition

Category	R	Α	PRA	
Terrestrial				
Other Non-Insect	5	32	5.88%	
Oligochaeta	1	1	0.18%	
Odonata				
Ephemeroptera	1	141	25.92%	
Plecoptera	3	17	3.13%	
Heteroptera				
Megaloptera				
Neuroptera				
Trichoptera	3	102	18.75%	
Lepidoptera				
Coleoptera	2	42	7.72%	
Diptera	5	157	28.86%	
Chironomidae	11	52	9 56%	



Dominant Taxa

Category	Α	PRA
Simulium	150	27.57%
Baetis tricaudatus complex	141	25.92%
Hydropsyche	73	13.42%
Heterlimnius corpulentus	37	6.80%
Ostracoda	17	3.13%
Phaenopsectra	16	2.94%
Hydroptila	16	2.94%
Tanytarsus	12	2.21%
Hydroptilidae	10	1.84%
Zapada cinctipes	9	1.65%
Trepaxonemata	7	1.29%
Narpus concolor	5	0.92%
Malenka	5	0.92%
Eukiefferiella Devonica Gr.	5	0.92%
Acari	4	0.74%


Functional Composition

Category	R	Α	PRA
Predator	8	21	3.86%
Parasite			
Collector Gatherer	11	221	40.63%
Collector Filterer	5	242	44.49%
Macrophyte Herbivore			
Piercer Herbivore	1	26	4.78%
Xylophage			
Scraper	1	16	2.94%
Shredder	4	17	3.13%
Omnivore			
Unknown	1	1	0.18%

Metric Values and Sco

Metric Values and Scores	
Metric	Value
Composition	
Composition Taxa Richness E Richness P Richness T Richness EPT Richness EPT Percent All Non-Insect Abundance All Non-Insect Richness All Non-Insect Richness All Non-Insect Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera Dominance Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (1) Percent	31 1 3 7 47.79% 33 6 6.07% 0.18% 1.000 0.716 27.57% 53.49% 66.91%
Diversity	
Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness	2.117 3.054 4.866 0.197 0.079
Function	
Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Filterer	8 3.86% 5 44.49% 85.11% 6.07% 0.066 0.062
Habit	
Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent	3 0.55% 1 25.92% 13 61.58%
Characteristics	
Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent	0 0.00% 3 3.49% 3 1.10%
Voltinism	
Univoltine Richness Semivoltine Richness Multivoltine Percent	11 2 18.20%
Tolerance Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent CTQa	4 1.29% 0 0.00% 4.603 0 2.94% 5.266 2.57% 5.33% 82.650

Bioassessment Indices

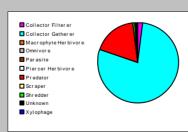
BioIndex	Description	Score	Pct	Rating
BIBI	B-IBI (Karr et al.)	20	40.00%	
MTP	Montana DEQ Plains (Bukantis 1998)	23	76.67%	Slight
MTV	Montana Revised Valleys/Foothills (Bollman 1998)	7	38.89%	Moderate
MTM	Montana DEQ Mountains (Bukantis 1998)	6	28.57%	Moderate

Project ID:	CB16LD
RAI No.:	CB16LD006
Sta. Name:	Yarrow East Tributary(leaky dumpster site) Rep 1
Client ID:	YarrowEastTribBelRM0.3_2016R1
STORET ID	
Coll. Date:	8/25/2016
Latitude:	47.6371 Longitude: -122.1968

Abundance Measures

Sample Count:	485		
Sample Abundance:	485.00 100.00% of sample used		
Coll. Procedure:	Surber		
Sample Notes:	Individual Jar IDs: YarrowEastTribBelRM0.3_2016R1_JarA, YarrowEastTribBelRM0.3_2016R1_JarB,		

Taxonomic Composition


Category	R	Α	PRA
Terrestrial			
Other Non-Insect	5	321	66.19%
Oligochaeta	6	86	17.73%
Odonata			
Ephemeroptera	1	58	11.96%
Plecoptera	1	1	0.21%
Heteroptera			
Megaloptera			
Neuroptera			
Trichoptera	2	2	0.41%
Lepidoptera			
Coleoptera			
Diptera	3	10	2.06%
Chironomidae	3	7	1.44%

Dominant Taxa

Category	Α	PRA
Crangonyx	227	46.80%
Trepaxonemata	69	14.23%
Baetis tricaudatus complex	58	11.96%
Enchytraeus	40	8.25%
Lumbriculidae	37	7.63%
Acari	10	2.06%
Sphaeriidae	9	1.86%
Forcipomyiinae	7	1.44%
Nemata	6	1.24%
Naididae	5	1.03%
Limnophyes	4	0.82%
Orthocladiinae	2	0.41%
Limonia	2	0.41%
Malenka	1	0.21%
Hvdropsvche	1	0.21%

Functional Composition

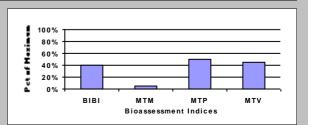
Category	R	Α	PRA
Predator	4	87	17.94%
Parasite			
Collector Gatherer	11	378	77.94%
Collector Filterer	3	11	2.27%
Macrophyte Herbivore			
Piercer Herbivore			
Xylophage			
Scraper			
Shredder	2	3	0.62%
Omnivore			
Unknown	1	6	1.24%

Pct

15 50.00% Moderate

20 40.00%

1 4.76% Severe


Rating

Score

Montana Revised Valleys/Foothills (Bollman 1998) 8 44.44% Moderate

Metric Values and Scores

Metric Values and Scores	
Metric	Value
Composition	
Taxa Richness E Richness P Richness	21 1 1
T Richness EPT Richness EPT Percent	2 4 12.58%
All Non-Insect Abundance All Non-Insect Richness	407 11
All Non-Insect Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera	83.92% 17.73% 1.000
Hydropsychidae/Trichoptera	0.500
Dominance	
Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent	46.80% 61.03% 72.99% 96.49%
Diversity	50.4570
Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness	1.794 2.588 3.235 0.267 0.090
Function	
Predator Richness Predator Percent Filterer Richness	4 17.94% 3
Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer	2.27% 80.21% 0.62% 0.000
Scraper/Scraper+Filterer Habit	0.000
Burrower Richness	3
Burrower Percent Swimmer Richness	8.25% 1
Swimmer Percent	11.96%
Clinger Richness Clinger Percent	3 0.62%
Characteristics	0.02%
Cold Stenotherm Richness	0
Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent	0.00%
Air Breather Richness	2
Air Breather Percent	0.62%
Voltinism	
Univoltine Richness Semivoltine Richness	11 0
Multivoltine Percent	3.51%
Tolerance	
Sediment Tolerant Richness	2
Sediment Tolerant Percent Sediment Sensitive Richness	8.04% 0
Sediment Sensitive Percent	0.00%
Metals Tolerance Index Pollution Sensitive Richness	3.659 0
Pollution Tolerant Percent Hilsenhoff Biotic Index	1.24%
Intolerant Percent	5.501 0.41%
Supertolerant Percent CTQa	3.71%
Ulud	96.000

Thursday, October 06, 2016

Bioassessment Indices

B-IBI (Karr et al.)

Montana DEQ Plains (Bukantis 1998)

Montana DEQ Mountains (Bukantis 1998)

BioIndex Description

BIBI

MTP

MTV

MTM