# AQUATIC INVERTEBRATE ASSEMBLAGES AND BIOLOGICAL ASSESSMENT OF STREAM SITES IN THE CITY OF BELLEVUE, WASHINGTON:

2014

Report to the City of Bellevue, Washington Utilities Department Kit Paulsen, Project Manager

Prepared by



Billie Kerans and Wease Bollman Rhithron Associates, Inc. Missoula, Montana

June 2015

#### **INTRODUCTION**

This report summarizes and interprets aquatic macroinvertebrate data collected in August 2014 at stream sites in the City of Bellevue, King County, Washington. As with the projects completed in prior years, the objectives of this study include using the invertebrate biota to detect impairment to biological health, using 2 assessment tools: the B-IBI (Benthic Index of Biological Integrity: Puget Sound Stream Benthos: http://pugetsoundstreambenthos.org, accessed May 2015), and a predictive model (RIVPACS – the River InVertebrate Prediction and Classification System). The 10 B-IBI metrics and index scores were calibrated for streams of the Pacific Northwest and obtained from the Puget Sound Stream Benthos website, using the revised version based on continuous scoring (0-100). The RIVPACS model was developed by the Washington Department of Ecology (WDOE). RIVPACS compares the occurrence of taxa at a site with the taxa expected at a similar site with minimal human influence, and yields a score that summarizes the comparison. These assessment tools provide a summary score of biological condition, and the B-IBI can be translated into biological health condition classes (i.e., excellent, good, fair, poor, and very poor) based on ranking criteria used by King County and other agencies and organizations in the Puget Sound region.

In addition, this report identifies probable stressors that may account for diminished stream health in site-specific narrative summaries. These summaries are based on the demonstrated and expected associations between patterns of response of B-IBI metrics and other metric expressions, as well as the taxonomic and functional composition of the benthic assemblages. The analysis examines common stressors associated with urbanization: water quality degradation (including metals contamination), changes to natural thermal regimes, loss and impairment of instream habitats due to sediment deposition and altered flow regimes, and disturbance to reach-scale and in-stream habitat features such as stream banks, channel morphology, and riparian zone integrity.

#### **METHODS**

#### Sampling

The City of Bellevue provided oversight for the collection of 9 aquatic invertebrate samples from 4 sites. Three replicate samples were collected at Unnamed Tributary (Vasa) and at Lewis I-90. Single collections were made at the other 3 sites. Samples were processed and invertebrates identified by Rhithron Associates, Missoula, Montana.

#### Sample processing

In the laboratory, standard sorting protocols were applied to achieve representative subsamples of aquatic organisms. Caton sub-sampling devices (Caton 1991), divided into 30 grids, each approximately 5 cm by 6 cm were used. Each individual sample was thoroughly mixed in its jar(s), poured out and evenly spread into the Caton tray, and individual grids were randomly

selected. The contents of each grid were examined under stereoscopic microscopes using 10x30x magnification. All aquatic invertebrates from each selected grid were sorted from the substrate, and placed in ethanol for subsequent identification. The final selected grid was completely sorted of all organisms. All unsorted sample fractions were retained and stored at the Rhithron laboratory.

Organisms were individually examined by certified taxonomists, using 10x – 80x stereoscopic dissecting scopes (Leica S8E and S6E) and identified to target taxonomic levels consistent with protocols for Puget Sound Lowlands streams, using appropriate published taxonomic references and keys. Midges (Diptera: Chironomidae) were identified to genus/species group/species and Oligochaetes were identified to genus/species. Identification, counts, life stages, and information about the condition of specimens were recorded on bench sheets. To obtain accuracy in richness measures, organisms that could not be identified to the target level specified were designated as "not unique" if other specimens from the same group could be taken to target levels. Organisms designated as "unique" were those that could be definitively distinguished from other organisms in the sample. Identified organisms were preserved in 95% ethanol in labeled vials, and archived at the Rhithron laboratory.

Midges and worms were carefully morphotyped using 10x - 80x stereoscopic dissecting microscopes (Leica S8E and S6E) and representative specimens were slide mounted and examined at 200x - 1000x magnification using an Olympus BX 51 compound microscope with Hoffman contrast. Slide mounted organisms were archived at the Rhithron laboratory.

#### Quality assurance (QA)/ quality control (QC) procedures

Quality control procedures for initial sample processing and subsampling involved checking sorting efficiency (SE). An independent observer microscopically re-examined 100% of the sorted substrate from a randomly selected sample, representing 11.1% of total samples. All organisms that were missed were counted and this number was added to the total number obtained in the original sort. Sorting efficiency was evaluated by applying the following calculation:

$$SE = [n_1/(n_1 + n_2)] X 100$$

where: SE is the sorting efficiency, expressed as a percentage,  $n_1$  is the total number of specimens in the first sort, and  $n_2$  is the total number of specimens in the second sort. Target efficiency for these samples was 90%.

Quality assurance procedures for taxonomic determinations of invertebrates involved checking accuracy, precision and enumeration. One sample was randomly selected and all organisms re-identified and counted by an independent taxonomist. Taxa lists and enumerations were compared by calculating the Percent Taxonomic Difference (PTD), the Percent Difference in Enumeration (PDE), and a Bray-Curtis similarity statistic (Bray and Curtis 1957) for each selected

sample. Internal data quality targets for these parameters are: PTD ≤5%, PDE ≤5%, and BrayCurtis similarity ≥95%. Routinely, discrepancies between the original identifications and the QC identifications are discussed among the taxonomists, and necessary rectifications to the data are made. Discrepancies that cannot be rectified by discussions are routinely sent out to taxonomic specialists for identification. However, taxonomic certainty for identifications in this project was high, and no external verifications were necessary.

#### Data analysis

B-IBI metrics and scores were obtained from the Puget Sound Stream Benthos (PSSB) website, using the updated version (accessed in May 2015), scaled continuously between 0 and 100. RIVPACS scores were obtained by entering data into a web-based application maintained by the Utah State University's Western Center for Monitoring and Assessment of Freshwater Ecosystems. Related applications on this website produce a taxa list from each sample by a random re-sampling routine that standardizes sample sizes. Some taxa are excluded from the analysis. Output from the RIVPACS applications provide a RIVPACS score for each replicate.

Metric and taxonomic signals for water quality (including the presence of possible metals contamination), thermal condition, sediment deposition and habitat indicators were investigated and described in narrative interpretations. These interpretations of the taxonomic and functional composition of invertebrate assemblages are based on demonstrated associations between assemblage components and habitat and water quality variables gleaned from the published literature, the writer's own research and professional judgment, and those of other expert sources (e.g. Wisseman 1998). Often canonical procedures are used for stressor identification; however, the substantial data required for such procedures (e.g., surveys of habitat, historical and current data related to water quality, land use, point and non-point source influences, soils, hydrology, geology) were not readily available for this study. Instead, attributes of invertebrate taxa that are well-substantiated in diverse literature, published and unpublished research, and that are generally accepted by regional aquatic ecologists, are combined into descriptions of probable water quality and instream and reach-scale habitat conditions. The approach to this analysis uses some assemblage attributes that are interpreted as evidence of water quality and other attributes that are interpreted as evidence of habitat integrity. To arrive at impairment hypotheses, attributes are considered individually, so information is maximized by not relying on a single cumulative score, which may mask stress on the biota. When replicate samples were collected, data were combined for the narrative analyses.

Mayfly taxa richness, the Hilsenhoff Biotic Index (HBI) value (Hilsenhoff 1987), the richness and abundance of hemoglobin-bearing taxa and the richness of sensitive taxa are often used as indicators of water quality. Mayfly taxa richness has been demonstrated to be significantly correlated with chemical measures of dissolved oxygen, pH, and conductivity (e.g. Bollman 1998, Fore et al. 1996, Wisseman 1996). The HBI has a long history of use and validation (Cairns and Pratt 1993, Smith and Tran 2010, Johnson and Ringler 2014). The index uses the relative abundance of taxa and the tolerance values associated with them to calculate a score

representative of the tolerance of a benthic invertebrate assemblage. Higher HBI scores indicate more tolerant assemblages. In one study, the HBI was demonstrated to be significantly associated with conductivity, pH, water temperature, sediment deposition, and the presence of filamentous algae (Bollman 1998). Nutrient enrichment often results in large crops of filamentous algae (Watson 1988). Thus in these samples, when macroinvertebrates associated or dependent on filamentous algae (e.g. LeSage and Harrison 1980, Anderson 1976) are abundant, the presence of filamentous algae and nutrient enrichment are also suspected. In addition, low oxygen concentrations are often a result of nutrient enrichment in situations where enrichment has encouraged excessive plant growth; nocturnal respiration by these plants creates hypoxic conditions. Hemoglobin-bearing taxa are very tolerant of environments with low oxygen concentrations, because the hemoglobin in their circulating fluids enables them to carry more oxygen than organisms without it. Finally, sensitive taxa exhibit intolerance to a wide range of stressors (e.g. Wisseman 1996, Hellawell 1986, Barbour et al. 1999), including nutrient enrichment, acidification, thermal stress, sediment deposition, habitat disruption, and other causes of degraded ecosystem health. These taxa are expected to be present in predictable numbers in well-functioning streams.

The absence of invertebrate groups known to be sensitive to metals and the Metals Tolerance Index (MTI, McGuire 1998) are considered signals of possible metals contamination. Metals sensitivity for some groups, especially the heptageniid mayflies, is well-known (e.g. Kiffney and Clements 1994, Clements 1999, Clements 2004, Montz et al. 2010, Iwasaki et al. 2013). In the present approach, the absence of these groups in environs where they are typically expected to occur is considered a signal of possible metals contamination, especially when these signals are combined with a measure of overall assemblage tolerance of metals. The MTI ranks taxa according to their sensitivity to metals. Weighting taxa by their abundance in a sample, assemblage tolerance is estimated by averaging the tolerance of all sampled individuals. Higher values for the MTI indicate assemblages with greater tolerance to metals contamination.

Thermal characteristics of the sampled site are predicted by the richness and abundance of cold stenotherm taxa (Clark 1997), which require low water temperatures, and by calculation of the predicted temperature preference of the macroinvertebrate assemblage (Brandt 2001). Hemoglobin-bearing taxa are also indicators of warm water temperatures (Walshe 1947), because dissolved oxygen is directly associated with water temperature (colder water can hold more dissolved oxygen); oxygen concentrations can also vary with the degree of nutrient enrichment. Increased temperatures and high nutrient concentrations can, alone or in concert, create conditions favorable to hypoxic sediments, habitats preferred by hemoglobin-bearers.

Stress from sediment is evaluated by caddisfly richness and by "clinger" richness (Kleindl 1995, Bollman 1998, Karr and Chu 1999, Wagenhoff et al. 2012, Leitner et al. 2015). The Fine Sediment Biotic Index (FSBI) (Relyea et al. 2001) is also used. Similar to the HBI, tolerance values are assigned to taxa based on the substrate particle sizes with which the taxa are most frequently associated. Scores are determined by weighting these tolerance values by the relative

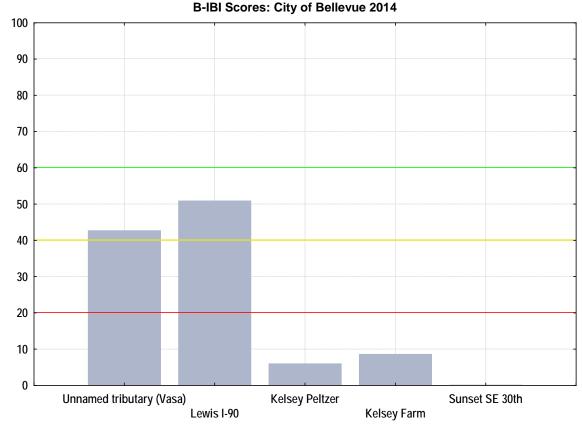
abundance of taxa in a sample. Higher values of the FSBI indicate assemblages with greater fine sediment sensitivity. However, it appears that FSBI values may be influenced by the presence of other deposited material, such as large organic material, including leaves and woody debris.

Functional characteristics of the macroinvertebrate assemblages may also reveal the condition of instream and streamside habitats. Alterations from predicted patterns of the functional characteristics may be interpreted as evidence of water quality or habitat disruption. Predicted patterns are based on the morphology and behaviors associated with feeding, and are interpreted in terms of the River Continuum Concept (Vannote et al. 1980) in the narratives. For example, the abundance of stonefly predators is likely to be related to the diversity of invertebrate prey species, and thus the complexity of instream habitats. Sites with fewer than expected stonefly species are likely to have reduced habitat complexity. Also, the absence of long-lived species (those that take 2 years to mature in the stream) is likely related to catastrophes like periodic scour, thermal stress or toxic pollutants that could interrupt long life cycles. In addition, shredders and the microbes they depend on are sensitive to modifications of the riparian zone vegetation (Plafkin et al. 1989).

#### **RESULTS**

#### **Quality Control Procedures**

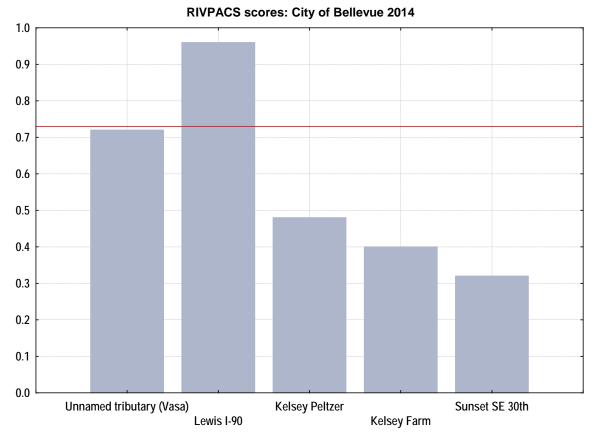
Sorting efficiency for the randomly-selected quality control samples was 95.63%. PDE (0.74%), PTD (1.76%), and Bray-Curtis similarity was 98.96%. All QC parameters met Rhithron's internal quality criteria (Rhithron Associates 2013), and were all well within industry standards for sorting and taxonomic data quality (Stribling et al. 2003).


#### Data analysis

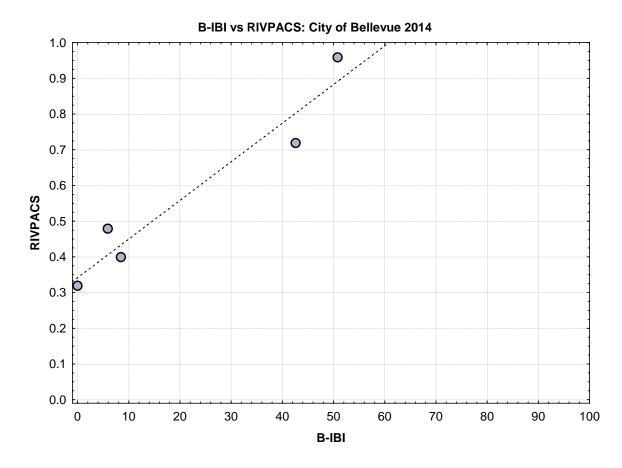
Taxa lists and counts, and values and scores for standard bioassessment metrics for composited replicate samples are given in the Appendix. Table 1 summarizes B-IBI and RIVPACS scores for sites and for sample replicates.

Site B-IBI scores varied from 0 to 50.8 for City of Bellevue samples collected in 2014. These scores indicated "very poor" conditions for 3 sites (Kelsey Pelzer, Kelsey Farm, Sunset SE 30<sup>th</sup>) and "fair" condition for two sites (Unnamed Tributary (Vasa) and Lewis I 90). B-IBI site scores are graphed in Figure 1.

**Table 1.** B-IBI scores and RIVPACS scores for replicates and for sites. The B-IBI site scores and the RIVPACs site scores for the Unnamed Tributary site, from which 3 replicates were collected, and the Lewis Creek site, from which 3 replicates were collected, were obtained by scoring the composited replicates. All B-IBI scores were calculated by the PSSB website database application. City of Bellevue, 2014.


|                                      | Bellevue site                          |                    | B-IB                                                   | l Scores | RIVPAC    | CS Scores           |  |
|--------------------------------------|----------------------------------------|--------------------|--------------------------------------------------------|----------|-----------|---------------------|--|
| Station name                         | ID ID                                  | PSSB site ID       | PSSB site ID  Replicate   Site (composite)   Replicate |          | Replicate | Site<br>(composite) |  |
| Unnamed<br>Tributary (Vasa)<br>Rep 1 | 0160 S. of Vasa<br>Rep 1               |                    | 27.7                                                   |          | 0.72      |                     |  |
| Unnamed<br>Tributary (Vasa)<br>Rep 2 | 0160 S. of Vasa<br>Rep 2               | Unnamed0160RM.1    | 35.3                                                   | 42.6     | 0.64      | 0.72                |  |
| Unnamed<br>Tributary (Vasa)<br>Rep 3 | 0160 S. of Vasa<br>Rep 3               |                    | 30.0                                                   |          | 0.64      |                     |  |
| Lewis I-90<br>Rep 1                  | Lewis I 90<br>Rep 1                    |                    | 32.8                                                   |          | 0.88      |                     |  |
| Lewis I-90<br>Rep 2                  | Lewis I 90<br>Rep 2                    | LewisBelRM0.8      | 34.2                                                   | 50.8     | 0.88      | 0.96                |  |
| Lewis I-90<br>Rep 3                  | Lewis I 90<br>Rep 3                    |                    | 19.8                                                   |          | 0.56      |                     |  |
| Kelsey Peltzer<br>Rep 1              | Kelsey Peltzer<br>1A-E                 | KelBelRM3.9        | !                                                      | 5.9      | 0         | .48                 |  |
| Kelsey Farm                          | Kelsey Farm 1-6                        | KelBelRM1.6        |                                                        | 8.5      | 0.40      |                     |  |
| Sunset SE 30th                       | Sunset SE 30 <sup>th</sup><br>Rep 1A-D | Sunset/RichardsRM0 |                                                        | 0        | 0.32      |                     |  |




**Figure 1.** B-IBI site scores for stream sites in the City of Bellevue, 2014. The B-IBI score for the Sunset SE 30<sup>th</sup> site was 0. The green line indicates the threshold (B-IBI = 60) for "good" conditions, as described on the Puget Sound Stream Benthos website (pugetsoundstreambenthos.org, accessed May 2014) for scoring using a 0-100 continuous scale. Scores below the threshold indicate impaired conditions. The yellow line is the threshold (B-IBI = 40) for "fair" conditions; scores falling below the threshold indicate "poor" conditions. Scores falling below the red line (B-IBI = 20) indicate "very poor" conditions.

RIVPACS site scores varied from 0.32 to 0.96. These scores indicated impaired biological conditions in 2014 for 5 of the 6 sites. A RIVPACS score of 0.96 indicated "unimpaired" conditions at one site (Lewis I-90). RIVPACS site scores for replicates collected at the Unnamed Tributary (Vasa) and at Lewis 1-90 were obtained by scoring composited replicates. Site scores are graphed in Figure 2.

B-IBI site scores and RIVPACS site scores for the 5 locations in this study were significantly correlated with each other (r = 0.9653, p = 0.0077). Figure 3 illustrates this relationship.



**Figure 2.** RIVPACS site scores for stream sites in the City of Bellevue, 2014. The red line indicates the threshold (RIVPACS = 0.73) for "unimpaired" conditions, set by WDOE. Scores below the threshold indicate impaired conditions.



**Figure 3.** Correlation between B-IBI site scores and RIVPACS site scores for locations in the City of Bellevue, 2014. The relationship was significant (r = 0.9653, p = 0.0077).

#### Aquatic invertebrate assemblage characteristics

#### **Unnamed Tributary (Vasa) (replicates)**

#### Bioassessment scores: 2014

Three replicate samples were collected at this site in 2014 and this analysis is based on an average of the 3 replicates. The B-IBI site score (31.0) indicated "fair" biological condition. The mean RIVPACS score (0.68) over 3 replicates indicated impaired conditions.

#### Indicators of ecological condition: 2014

Three replicate samples were collected at this site in 2014 and discussion of the indicators of ecological condition are based on a composite of all 3 replicates. Because only a total of 439 invertebrates for the 3 samples were represented, the results of richness metrics should be comparable to results from sites where only a single sample was collected. However, it should be noted that the low number of organisms in these samples is suggestive of either water quality or habitat disturbances.

#### a. Water quality

Four mayfly taxa were found in the samples collected at this site including the ubiquitous *Baetis tricaudatus*, *Diphetor hageni*, *Ironodes* sp. and several specimens of the cold stenotherm *Cinygma* sp. The low biotic index value (2.91) is suggestive of a sensitive assemblage. The presence of 3 sensitive taxa and the fact that the relatively sensitive chloroperlid stonefly *Sweltsa* sp. accounted for 14.4% of the sampled animals is concordant with the low biotic index value. Although the metals tolerance index value (4.08) exceeded the biotic index value, the presence of heptageniid mayflies suggests that metals contamination was not an issue at this site. In addition, the presence of several specimens of the turbellarian, *Polycelis* sp., suggests that ground water contributed to surface flow at this site. Thus, it seems likely that water quality was good at this site.

#### b. Thermal condition

Three cold stenotherm taxa were detected in the samples, accounting for a little over 6% of the sampled individuals. The thermal preference estimated for the assemblage was 14.4°C.

#### c. Sediment deposition

Fourteen "clinger" and 5 caddisfly taxa were collected in these samples, thus it seems likely that colonization was not appreciably limited by fine sediment. An FSBI value of 3.90 indicated a moderately sediment-tolerant assemblage.

#### d. Habitat diversity and integrity

Taxa richness (33) was moderately high suggesting that habitats were diverse and fairly well intact. There were 6 stonefly taxa found suggesting that reach-scale habitat features were relatively undisrupted. Although there were 2 semi-voltine taxa present in the samples represented by 12 individuals (2.7% of the assemblage), the diversity of organisms makes it seems likely that this site was not subjected to thermal stress, toxic pollutants or other catastrophes that would interrupt long life cycles. All the functional-feeding groups were well represented and gatherers (32.6%) and filterers (26.7%) dominated the functional mix.

#### Lewis I-90 (replicates)

#### Bioassessment scores: 2014

Three replicate samples were collected at this site in 2014 and this analysis is based on an average of the 3 replicates. The B-IBI site score for this site was 28.9, indicating "fair" conditions. The mean RIVPACS result over the 3 replicates (0.77) indicated "unimpaired" conditions.

#### Indicators of ecological condition: 2014

Discussion of the indicators of ecological condition are based on a composite of the 3 replicate samples that were collected at this site in 2014. Since a total of 854 invertebrates were represented, the results of richness metrics cannot be compared directly to results from sites where only a single sample was collected.

#### a. Water quality

Although 3 mayfly taxa were found in the composite sample (*Baetis tricaudatus*, *Diphetor hageni*, *and Cinygma* sp.), the group was dominated by *B. tricaudatus* (146 individuals versus 3 of the other two taxa) and only 2 specimens of the sensitive cold stenotherm, *Cinygma* sp., were found. The biotic index value (4.22) was moderately elevated above expectations for a Puget Sound Lowlands stream indicating a moderately tolerant assemblage. Although 5 sensitive taxa were found, the hemoglobin-bearing midge *Polypedilum* sp. accounted for slightly over 10% of the sampled invertebrates suggesting that hypoxic substrates might be present at this site. These results suggest that water quality was mildly impaired here. The slightly elevated biotic index combined with the suggestion of hypoxic substrates suggests that the water quality impairment may be related to nutrient enrichment. The presence of several specimens of the turbellarian, *Polycelis* sp., suggests that ground water contributed to surface flow at this site. There was no evidence of metals contamination.

#### b. Thermal condition

Four cold stenotherm taxa were collected accounting for only approximately 1% of the invertebrates collected in the sample. The temperature preference of the assemblage was 14.9 °C.

#### c. Sediment deposition

Caddisflies were represented by 8 taxa and "clingers" were represented by 21 taxa. These findings suggest that the deposition of fine sediment did not limit colonization in this reach. The FSBI (4.58) indicated a moderately sediment-tolerant assemblage.

#### d. Habitat diversity and integrity

Taxa richness (43) was high at this site suggesting that in-stream habitats were diverse and intact, although this may be an overestimate compared to the other sites because this result is based on 3 samples. At least 5 stonefly taxa were recorded from this site, thus riparian zones, channel morphology and stream banks were probably in good condition. Six semi-voltine taxa were collected, suggesting stable instream conditions. Scour, toxic inputs, and thermal extremes seem unlikely. All functional feeding groups were well represented with the dominant groups being the gatherers (34.8%) and filterers (35.3%) suggesting the importance of fine particulate organic matter to the energy flow of the system. In addition, shredders were abundant (15%) suggesting ample inputs of streamside vegetation.

#### Kelsey Peltzer

#### Bioassessment scores: 2014

The B-IBI score for Kelsey Peltzer was 5.9 indicating "very poor" biological conditions. The RIVPACS score (0.48) also indicated impaired biological condition.

#### Indicators of ecological condition: 2014

#### a. Water quality

Low mayfly taxa richness (1, *Baetis tricaudatus*) and an elevated biotic index (5.39) suggest that water quality was impaired in this reach. There were no sensitive taxa collected and relatively tolerant organisms, including the blackfly *Simulium* sp. (48%), the isopod *Caecidotea* sp. (6.9%) and several tolerant midge species, were abundant at this site. The functional composition of the assemblage was strongly dominated by collectors and filterers (84%): a pattern that is sometimes interpreted as evidence of water quality impairment. The taxonomic composition of the assemblage suggests nutrient enrichment in this reach. No evidence for metals contamination was found.

#### b. Thermal condition

No cold stenotherm taxa were encountered in the sample. The temperature preference of the assemblage was 14.8 °C.

#### c. Sediment deposition

Only 2 caddisfly taxa and 6 "clinger" taxa were present in this sample: both fewer than expected. The FSBI was 3.10, indicating that the taxa were fine sediment tolerant. These findings suggest that sediment deposition may have limited colonization of the stony substrate habitats.

#### d. Habitat diversity and integrity

Only 23 taxa were collected at this site, which may indicate disturbed or monotonous instream habitats. The sample contained only 2 stonefly taxa, both nemourids (*Malenka* sp. and *Zapada cinctipes*), suggesting that appreciable amounts of leafy and woody material was present. Low stonefly diversity may indicate disturbed reach-scale habitat features. Only one long-lived taxon was present, thus periodic thermal extremes, dewatering, or toxic pollutants cannot be ruled out in this reach. The domination of the assemblage by filterers (49%) and gatherers (35%) may indicate water quality impairment and that fine organic particulates were an important energy source in this reach.

#### **Kelsey Farm**

#### Bioassessment scores: 2014

The B-IBI score (8.5) calculated for the sample collected at this site indicated "very poor" conditions; the RIVPACS score (0.40) also indicated impairment.

#### Indicators of ecological condition: 2014

#### a. Water quality

A single mayfly taxon, the ubiquitous *Baetis tricaudatus*, was very abundant at this site. Low mayfly taxa richness combined with a very elevated biotic index value (6.09) suggests water quality impairment. No sensitive taxa were collected in this reach. The assemblage was dominated by relatively tolerant organisms. For example, midges in the family Chironomidae were a dominant component of the assemblage (36%). Although, not all chironomid taxa are tolerant, almost all of the midges found in this sample were tolerant. In addition, the invasive New Zealand mud snail (*Potamopyrgus antipodarum*) was the dominant taxon (29%) in the assemblage. The functional composition of the assemblage was dominated by gatherers (37%) and filterers (29%) and *P. antipodarum* (29%), which was classified as a scraper in this study, but

may often be omnivorous. The domination of filterers and gatherers combined with the domination of *P. antipodarum* is suggestive of water quality impairment and the taxonomic composition of the assemblage suggests nutrient enrichment. There was no evidence of metals contamination.

#### b. Thermal condition

The composition of the fauna suggested relatively warm water temperatures, and the calculated temperature preference of the assemblage (15.9 °C) supported this contention. No cold stenotherm taxa were found.

#### c. Sediment deposition

No caddisfly taxa were found in this reach and only 6 "clinger" taxa were recorded. The FSBI value was 4.15 indicating an assemblage that was moderately tolerant of fine sediment. These results suggest that colonization of stony substrates is probably limited by the deposition of fine sediment.

#### d. Habitat diversity and integrity

Taxa richness (25) was low in this assemblage suggesting that instream habitats were not very diverse. Only one stonefly taxon was collected (*Malenka* sp.) and it was represented by only one individual. This very low stonefly abundance and diversity suggests that reach-scale habitat features were very disturbed. Only one semi-voltine taxon was found, thus instream habitats may have been disturbed by periodic thermal extremes, dewatering, scouring or release of toxic pollutants. The functional composition of the assemblage was dominated by gatherers and filterers, which may be an indication of water quality impairment. Their abundance suggests that fine organic particulates were an important energy source in this reach.

#### Sunset SE 30th

#### Bioassessment scores: 2014

The B-IBI score (0) generated by this sample indicated "very poor" biological conditions, and the RIVPACS score (0.32) also indicated impairment. This sample had both the lowest B-IBI score and the lowest RIVPACS score of any sample in this study.

#### Indicators of ecological condition: 2014

#### a. Water quality

*Baetis tricaudatus* was the only mayfly taxon collected in this reach. The low mayfly richness combined with a moderately elevated biotic index value (4.85) suggests water quality was

impaired at this site. The sample was dominated by tolerant organisms like the amphipod *Crangonyx* sp. (25%) and blackflies (26%). The sample contained no sensitive taxa. The assemblage was dominated by gatherers (54%) and filterers (26%), which was also suggestive of nutrient enrichment.

#### b. Thermal condition

No cold stenotherm taxa were recorded from this reach. The assemblage appeared to be dominated by relatively warm-water taxa as the assemblage temperature preference was 15.3 °C.

#### c. Sediment deposition

Only one caddisfly taxon was recorded from this reach and it was represented by only 2 individuals. Very few "clinger" taxa (4) were also collected here. The FSBI (3.69) indicated a moderately sediment tolerant assemblage. Thus, it appears that colonization of stony sediments is probably impaired by the deposition of fine sediments.

#### d. Habitat diversity and integrity

Very few taxa (14), the lowest in this study, were collected at this site, which may indicate disturbed or monotonous instream habitats. The sample contained only 1 stonefly taxon (*Malenka* sp.). The low taxa richness of stoneflies suggests that there may be loss of streambank stability, disturbed riparian zones, or altered channel morphology. Leaf litter and large organic material may have been abundant in the reach because *Malenka* sp., a shredder, made up about 7% of the assemblage. No long-lived taxa were recorded, thus catastrophes such as periodic dewatering, scouring sediment pulses, or intermittent inputs of toxic pollutants cannot be ruled out. The functional composition of the benthic assemblage was dominated by gatherers (54%) and filterers (26%), providing further evidence for water quality impairment and suggesting the importance of fine particles as a food source and shredders were notably abundant (8%) suggesting that leaf litter was also probably abundant.

#### **DISCUSSION**

The B-IBI of all sites indicated "fair" conditions at 2 sites and "very poor" conditions at 3 sites, and the RIVPACS score of only one site (Lewis I-90) was considered unimpaired. Multiple sources of stress were suggested by invertebrate assemblages at a minimum of 3 sites. Table 2 summarizes the stressors suggested by the analysis of the taxonomic and functional characteristics of the biotic assemblages. Evidence for metals contamination could not be readily identified from the components of the biota at any site.

**Table 2.** Summary of possible stressors, as suggested by the taxonomic and functional composition of invertebrate assemblages. City of Bellevue, 2014.

| Site                       | water quality degradation | metals | thermal<br>stress | sediment<br>deposition | habitat<br>disruption |
|----------------------------|---------------------------|--------|-------------------|------------------------|-----------------------|
| Unnamed<br>Tributary(Vasa) |                           |        |                   |                        |                       |
| Lewis I-90                 | ?                         |        |                   |                        |                       |
| Kelsey Peltzer             | +                         |        |                   | +                      | +                     |
| Kelsey Farm                | +                         |        | +                 | +                      | +                     |
| Sunset SE 30th             | +                         |        | +                 | +                      | +                     |

#### LITERATURE CITED

Anderson, N. H. 1976. The distribution and biology of the Oregon Trichoptera. Oregon Agricultual Experimentation Station Technical Bulletin No. 134: 1-152.

Barbour, M.T., J.Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Washington, D.C.

Bollman, W. 1998. Improving Stream Bioassessment Methods for the Montana Valleys and Foothill Prairies Ecoregion. Master's Thesis (MS). University of Montana. Missoula, Montana. Brandt, D. 2001. Temperature Preferences and Tolerances for 137 Common Idaho Macroinvertebrate Taxa. Report to the Idaho Department of Environmental Quality, Coeur d' Alene, Idaho.

Bray, J. R. and J. T. Curtis. 1957. An ordination of upland forest communities of southern Wisconsin. Ecological Monographs 27: 325-349.

Cairns, J., Jr. and J. R. Pratt. 1993. A History of Biological Monitoring Using Benthic Macroinvertebrates. Chapter 2 *in* Rosenberg, D. M. and V. H. Resh, eds. *Freshwater Biomonitoring and Benthic Macroinvertebrates*. Chapman and Hall, New York.

Caton, L. W. 1991. Improving subsampling methods for the EPA's "Rapid Bioassessment" benthic protocols. Bulletin of the North American Benthological Society. 8(3): 317-319.

Clark, W.H. 1997. Macroinvertebrate temperature indicators for Idaho. Draft manuscript with citations. Idaho Department of Environmental Quality. Boise, Idaho.

Clements, W. H. 1999. Metal tolerance and predator-prey interactions in benthic stream communities. *Ecological Applications* 9: 1073-1084.

Clements, W. H. 2004. Small-scale experiments support casual relationships between metal contamination and macroinvertebrate community response. *Ecological Applications* 14: 954967.

Fore, L.S. 2003. Biological assessment of mining disturbance on stream invertebrates in mineralized areas of Colorado. Chapter 19 *in* Simon, T.P. ed. *Biological Response Signatures: Indicator Patterns Using Aquatic Communities.* 

Fore, L. S., J. R. Karr and R. W. Wisseman. 1996. Assessing invertebrate responses to human activities: evaluating alternative approaches. *Journal of the North American Benthological Society* 15(2): 212-231.

Hellawell, J. M. 1986. *Biological Indicators of Freshwater Pollution and Environmental Management*. Elsevier, London.

Hilsenhoff, W. L. 1987. An improved biotic index of organic stream pollution. *Great Lakes Entomologist*. 20: 31-39.

Iwasaki, Y., P. Cadmus, and W. H. Clements 2013. Comparison of different predictors of exposure for modeling impacts of metal mixtures on macroinvertebrates in stream microcosms. Aquatic Toxicology 132–133: 151–156

Johnson, S.L. and N. H. Ringler. 2014. The response of fish and macroinvertebrate assemblages to multiple stressors: A comparative analysis of aquatic communities in a perturbed watershed (Onondaga Lake, NY). Ecological Indicators 41: 198-208.

Karr, J.R. and E.W. Chu. 1999. *Restoring Life in Running Waters: Better Biological Monitoring.* Island Press. Washington D.C.

King County. 2008. http://www.pugetsoundstreambenthos/BIBI-Scoring-Types.aspx

Kleindl, W.J. 1995. A benthic index of biotic integrity for Puget Sound Lowland Streams, Washington, USA. M.S. Thesis. University of Washington, Seattle, Washington.

LeSage, L. and A. D. Harrison. 1980. The biology of *Cricotopus* (Chironomidae: Orthocladiinae) in an algal-enriched stream. Archiv fur Hydrobiologie Supplement 57: 375-418.

Leitner, P., C. Hauer, T. Ofenböck, F. Pletterbauer, A. Schmidt-Kloiber, and W. Graf. 2015. Fine sediment deposition affects biodiversity and density of benthic macroinvertebrates: A case study in the freshwater pearl mussel river Waldaist (Upper Austria). Limnologica 50: 54-57.

McGuire, D. 1998 cited in Bukantis, R. 1998. Rapid bioassessment macroinvertebrate protocols:

Sampling and sample analysis SOP's. Working draft. Montana Department of Environmental Quality. Planning Prevention and Assistance Division. Helena, Montana.

Montz, G. R., J. Hirsch, R. Rezanka, and D. F. Staples. 2010. Impacts of Copper on a Lotic Benthic Invertebrate Community: Response and Recovery. Journal of Freshwater Ecology 25: 575-587.

Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross and R. M. Hughes. 1989. Rapid Bioassessment Protocols for Use in Streams and Rivers. Benthic Macroinvertebrates and Fish. EPA 440-4-89-001. Office of Water Regulations and Standards, U.S. Environmental Protection Agency, Washington, D.C.

Relyea, C. D., G.W. Minshall, and R.J. Danehy. 2001. Stream insects as bioindicators of fine sediment. *In:* Proceeding Watershed 2000, Water Environment Federation Specialty Conference. Vancouver, BC.

Rhithron Associates. 2013. Laboratory Quality Assurance Plan. Working draft, version 13.2.d. Rhithron Associates, Inc. Missoula, Montana.

Smith, A. J. and C. P. Tran. 2010. A weight-of-evidence approach to define nutrient criteria protective of aquatic life in large rivers. Journal of the North American Benthological Society 29: 875-891.

Stribling, J.B., S.R Moulton II and G.T. Lester. 2003. Determining the quality of taxonomic data. J.N. Am. Benthol. Soc. 22(4): 621-631.

Vannote, R.L., Minshall, G.W., Cummins, K.W., Sedell, J.R., and C.E. Cushing. 1980. The river continuum concept. *Canadian Journal of Fisheries and Aquatic Sciences* 37:130-137.

Wagenhoff, A. C. R. Townsend, and C. D. Matthaei. 2012. Macroinvertebrate responses along broad stressor gradients of deposited fine sediment and dissolved nutrients: A stream mesocosm experiment. Journal of Applied Ecology 49: 892-902.

Walshe, J. F. 1947. On the function of haemoglobin in *Chironomus* after oxygen lack. *Journal of Experimental Biology* 24: 329-342.

Watson, V. J. 1988. Control of nuisance algae in the Clark Fork River. Report to Montana Department of Health and Environmental Sciences. Helena, Montana.

Wisseman R.W. 1998. Common Pacific Northwest benthic invertebrate taxa: Suggested levels for standard taxonomic effort: Attribute coding and annotated comments. Unpublished draft. Aquatic Biology Associates, Corvallis, Oregon.

#### **APPENDIX**

Taxa lists and metric summaries

City of Bellevue, Washington

2014

Project ID: CB14LD

RAI No.: CB14LD001

RAI No.: CB14LD001 Sta. Name: Unnamed Trib (Vasa) Rep 1

Client ID: 0160 S. of Vasa Rep 1

| Taxonomic Name          |              | Count | PRA    | Unique | Stage   | Qualifier | ВІ | Function |
|-------------------------|--------------|-------|--------|--------|---------|-----------|----|----------|
| Other Non-Insect        |              |       |        |        |         |           |    |          |
| Acari                   |              | 2     | 1.43%  | Yes    | Unknown |           | 5  | PR       |
| Planariidae             |              |       |        |        |         |           |    |          |
| Polycelis sp.           |              | 3     | 2.14%  | Yes    | Unknown |           | 1  | OM       |
| Oligochaeta             |              |       |        |        |         |           |    |          |
| Enchytraeidae           |              |       |        |        |         |           |    |          |
| <i>Fridericia</i> sp.   |              | 2     | 1.43%  | Yes    | Unknown |           | 11 | CG       |
| Lumbriculidae           |              |       |        |        |         |           |    |          |
| Lumbriculidae           |              | 1     | 0.71%  | Yes    | Unknown | Damaged   | 4  | CG       |
| Ephemeroptera           |              |       |        |        |         |           |    |          |
| Baetidae                |              |       |        |        |         |           |    |          |
| Baetis tricaudatus      |              | 41    | 29.29% | Yes    | Larva   |           | 4  | CG       |
| Diphetor hageni         |              | 2     | 1.43%  | Yes    | Larva   |           | 5  | CG       |
| Heptageniidae           |              |       |        |        |         |           |    |          |
| Cinygma sp.             |              | 8     | 5.71%  | Yes    | Larva   |           | 0  | SC       |
| Ironodes sp.            |              | 2     | 1.43%  | Yes    | Larva   |           | 0  | SC       |
| Plecoptera              |              |       |        |        |         |           |    |          |
| Chloroperlidae          |              |       |        |        |         |           |    |          |
| Sweltsa sp.             |              | 11    | 7.86%  | Yes    | Larva   |           | 0  | PR       |
| Nemouridae              |              |       |        |        |         |           |    |          |
| Zapada cinctipes        |              | 1     | 0.71%  | Yes    | Larva   |           | 3  | SH       |
| Pteronarcyidae          |              |       |        |        |         |           |    |          |
| Pteronarcys princeps    |              | 8     | 5.71%  | Yes    | Larva   |           | 0  | SH       |
| Trichoptera             |              |       |        |        |         |           |    |          |
| Glossosomatidae         |              |       |        |        |         |           |    |          |
| Glossosoma sp.          |              | 18    | 12.86% | Yes    | Larva   |           | 0  | SC       |
| Glossosomatidae         |              | 2     | 1.43%  | No     | Pupa    |           | 0  | SC       |
| Hydropsychidae          |              |       |        |        |         |           |    |          |
| Hydropsyche sp.         |              | 31    | 22.14% | Yes    | Larva   |           | 5  | CF       |
| Rhyacophilidae          |              |       |        |        |         |           |    |          |
| Rhyacophila Betteni Gr. |              | 1     | 0.71%  | Yes    | Larva   |           | 0  | PR       |
| Coleoptera              |              |       |        |        |         |           |    |          |
| Elmidae                 |              |       |        |        |         |           |    |          |
| <i>Lara</i> sp.         |              | 2     | 1.43%  | Yes    | Larva   |           | 1  | SH       |
| Diptera                 |              |       |        |        |         |           |    |          |
| Simuliidae              |              |       |        |        |         |           |    |          |
| Simulium sp.            |              | 5     | 3.57%  | Yes    | Larva   |           | 6  | CF       |
|                         | Sample Count | 140   |        |        |         |           |    |          |
|                         | p.oain       |       |        |        |         |           |    |          |

Project ID: CB14LD

RAI No.: CB14LD002

RAI No.: CB14LD002 Sta. Name: Unnamed Trib (Vasa) Rep 2

Client ID: 0160 S. of Vasa Rep 2

| Taxonomic Name                             | Count | PRA     | Unique | Stage    | Qualifier    | ВІ                                      | Function |
|--------------------------------------------|-------|---------|--------|----------|--------------|-----------------------------------------|----------|
| Other Non-Insect                           |       |         |        |          |              |                                         |          |
| Acari                                      | 1     | 0.54%   | Yes    | Unknown  |              | 5                                       | PR       |
| Physidae<br>Physidae                       | 1     | 0.54%   | Yes    | Unknown  |              | 8                                       | SC       |
| Planariidae<br><i>Polycelis</i> sp.        | 1     | 0.54%   | Yes    | Unknown  |              | 1                                       | ОМ       |
| Planorbidae<br>Planorbidae                 | 2     | 1.08%   | Yes    | Immature |              | 6                                       | SC       |
| Sphaeriidae<br>Sphaeriidae                 | 1     | 0.54%   | Yes    | Unknown  |              | 8                                       | CF       |
| Oligochaeta                                |       |         |        |          |              |                                         |          |
| Enchytraeidae                              |       |         |        |          |              |                                         |          |
| Enchytraeus sp.                            | 7     | 3.78%   | Yes    | Unknown  |              | 4                                       | CG       |
| Mesenchytraeus sp.                         | 1     | 0.54%   | Yes    | Unknown  |              | 4                                       | CG       |
| Lumbriculidae                              |       |         |        |          |              |                                         |          |
| Lumbriculidae                              | 5     | 2.70%   | Yes    | Unknown  | Damaged      | 4                                       | CG       |
| Naididae                                   | ŭ     | 2.1070  | 100    | O manown | Damagoa      |                                         | 00       |
| Tubificinae                                | 1     | 0.54%   | Yes    | Immature |              | 11                                      | CG       |
| Ephemeroptera                              | ·     | 0.0170  | 100    | mmataro  |              | • • • • • • • • • • • • • • • • • • • • | 00       |
| Baetidae                                   |       |         |        |          |              |                                         |          |
| Baetis tricaudatus                         | 29    | 15.68%  | Yes    | Larva    |              | 4                                       | CG       |
| Diphetor hageni                            | 1     | 0.54%   | Yes    | Larva    |              | 5                                       | CG       |
| Heptageniidae                              | ı     | 0.34%   | 168    | Laiva    |              | 5                                       | CG       |
| Cinygma sp.                                | 5     | 2.70%   | Yes    | Larva    |              | 0                                       | SC       |
|                                            | 3     | 2.7070  | 165    | Laiva    |              | U                                       | 30       |
| Plecoptera                                 |       |         |        |          |              |                                         |          |
| Chloroperlidae<br>Sweltsa sp.              | 00    | 45.000/ | \/     | 1        |              | 0                                       | DD       |
|                                            | 29    | 15.68%  | Yes    | Larva    |              | 0                                       | PR       |
| Leuctridae                                 |       |         |        |          |              |                                         |          |
| Leuctridae                                 | 1     | 0.54%   | Yes    | Larva    | Early Instar | 0                                       | SH       |
| Nemouridae                                 |       |         |        | _        |              | _                                       |          |
| Malenka sp.                                | 1     | 0.54%   | Yes    | Larva    |              | 1                                       | SH       |
| Soyedina sp.                               | 1     | 0.54%   | Yes    | Larva    |              | 2                                       | SH       |
| Zapada cinctipes                           | 2     | 1.08%   | Yes    | Larva    |              | 3                                       | SH       |
| Pteronarcyidae                             |       |         |        |          |              |                                         |          |
| Pteronarcys princeps                       | 1     | 0.54%   | Yes    | Larva    |              | 0                                       | SH       |
| Trichoptera                                |       |         |        |          |              |                                         |          |
| Glossosomatidae                            |       |         |        |          |              |                                         |          |
| Glossosoma sp.                             | 25    | 13.51%  | Yes    | Larva    |              | 0                                       | SC       |
| Glossosomatidae                            | 7     | 3.78%   | No     | Pupa     |              | 0                                       | SC       |
| Hydropsychidae<br><i>Hydropsyche</i> sp.   | 35    | 18.92%  | Yes    | Larva    |              | 5                                       | CF       |
| Lepidostomatidae<br><i>Lepidostoma</i> sp. | 3     | 1.62%   | Yes    | Larva    |              | 1                                       | SH       |
| Coleoptera                                 |       |         |        |          |              |                                         |          |
| Elmidae                                    |       |         |        |          |              |                                         |          |
| Lara sp.                                   | 1     | 0.54%   | Yes    | Larva    |              | 1                                       | SH       |
| <u>'</u>                                   | '     | 0.0470  | . 00   |          |              | '                                       | J        |

Project ID: CB14LD

RAI No.: CB14LD002

RAI No.: CB14LD002 Sta. Name: Unnamed Trib (Vasa) Rep 2

Client ID: 0160 S. of Vasa Rep 2

| Taxonomic Name       |              | Count | PRA   | Unique | Stage | Qualifier    | ВІ | Function |
|----------------------|--------------|-------|-------|--------|-------|--------------|----|----------|
| Diptera              |              |       |       |        |       |              |    |          |
| Simuliidae           |              |       |       |        |       |              |    |          |
| Simulium sp.         |              | 1     | 0.54% | No     | Pupa  |              | 6  | CF       |
| Simulium sp.         |              | 15    | 8.11% | Yes    | Larva |              | 6  | CF       |
| Chironomidae         |              |       |       |        |       |              |    |          |
| Chironomidae         |              |       |       |        |       |              |    |          |
| <i>Brillia</i> sp.   |              | 1     | 0.54% | Yes    | Larva |              | 4  | SH       |
| Eukiefferiella sp.   |              | 1     | 0.54% | Yes    | Larva | Early Instar | 8  | CG       |
| Parametriocnemus sp. |              | 6     | 3.24% | Yes    | Larva |              | 5  | CG       |
|                      | Sample Count | 185   |       |        |       |              |    |          |

Project ID: CB14LD

RAI No.: CB14LD003

RAI No.: CB14LD003 Sta. Name: Unnamed Trib (Vasa) Rep 3

Client ID: 0160 S. of Vasa Rep 3

| Taxonomic Name       |              | Count | PRA     | Unique | Stage   | Qualifier    | ВІ     | Function |
|----------------------|--------------|-------|---------|--------|---------|--------------|--------|----------|
| Other Non-Insect     |              |       |         |        |         |              |        |          |
| Acari                |              | 1     | 0.88%   | Yes    | Unknown |              | 5      | PR       |
| Crangonyctidae       |              |       |         |        |         |              |        |          |
| Crangonyx sp.        |              | 1     | 0.88%   | Yes    | Unknown |              | 6      | CG       |
| Oligochaeta          |              |       |         |        |         |              |        |          |
| Enchytraeidae        |              |       |         |        |         |              |        |          |
| Fridericia sp.       |              | 2     | 1.75%   | Yes    | Unknown |              | 11     | CG       |
| Ephemeroptera        |              |       |         |        |         |              |        |          |
| Baetidae             |              |       |         |        |         |              |        |          |
| Baetis tricaudatus   |              | 40    | 35.09%  | Yes    | Larva   |              | 4      | CG       |
| Diphetor hageni      |              | 1     | 0.88%   | Yes    | Larva   |              | 5      | CG       |
| Heptageniidae        |              |       |         |        |         |              |        |          |
| <i>Cinygma</i> sp.   |              | 2     | 1.75%   | Yes    | Larva   |              | 0      | SC       |
| Ironodes sp.         |              | 1     | 0.88%   | Yes    | Larva   |              | 0      | SC       |
| Plecoptera           |              |       |         |        |         |              |        |          |
| Chloroperlidae       |              |       |         |        |         |              |        |          |
| Sweltsa sp.          |              | 23    | 20.18%  | Yes    | Larva   |              | 0      | PR       |
| Leuctridae           |              |       |         |        |         |              |        |          |
| Leuctridae           |              | 2     | 1.75%   | Yes    | Larva   | Early Instar | 0      | SH       |
| Nemouridae           |              |       |         |        |         | ,            |        |          |
| Zapada cinctipes     |              | 1     | 0.88%   | Yes    | Larva   |              | 3      | SH       |
| Trichoptera          |              |       |         |        |         |              |        | _        |
| Glossosomatidae      |              |       |         |        |         |              |        |          |
| Glossosoma sp.       |              | 7     | 6.14%   | Yes    | Larva   |              | 0      | SC       |
| Hydropsychidae       |              |       |         |        |         |              | -      |          |
| Hydropsyche sp.      |              | 20    | 17.54%  | Yes    | Larva   |              | 5      | CF       |
| Philopotamidae       |              | _0    | 11.0170 |        | 20.70   |              | · ·    | О.       |
| Wormaldia sp.        |              | 1     | 0.88%   | Yes    | Larva   |              | 0      | CF       |
| Diptera              |              | ·     | 0.0070  |        | 20.70   |              | · ·    | О.       |
| Simuliidae           |              |       |         |        |         |              |        |          |
| Simulium sp.         |              | 8     | 7.02%   | Yes    | Larva   |              | 6      | CF       |
| Tipulidae            |              | Ü     | 7.0270  | .00    | Laiva   |              | · ·    | O.       |
| <i>Limonia</i> sp.   |              | 1     | 0.88%   | Yes    | Larva   |              | 6      | SH       |
| Chironomidae         |              | '     | 0.0070  | 103    | Luiva   |              | O      | 511      |
| Chironomidae         |              |       |         |        |         |              |        |          |
| Phaenopsectra sp.    |              | 1     | 0.88%   | Yes    | Larva   |              | 7      | SC       |
| Parametriocnemus sp. |              | 2     | 1.75%   | Yes    | Larva   |              | ,<br>5 | CG       |
|                      |              |       | 1.70/0  | 103    | Luiva   |              | 3      | 50       |
|                      | Sample Count | 114   |         |        |         |              |        |          |

Project ID: CB14LD

RAI No.: CB14LD004

RAI No.: CB14LD004 Sta. Name: Lewis I-90 Rep 1

Client ID: Lewis I 90 Rep 1

| Taxonomic Name                                     | Count | PRA     | Unique | Stage    | Qualifier | ВІ | Function |
|----------------------------------------------------|-------|---------|--------|----------|-----------|----|----------|
| Other Non-Insect                                   |       |         |        |          |           |    |          |
| Nemata                                             | 1     | 0.29%   | Yes    | Unknown  |           | 5  | UN       |
| Acari                                              | 7     | 2.06%   | Yes    | Unknown  |           | 5  | PR       |
| Crangonyctidae                                     |       |         |        |          |           |    |          |
| Crangonyx sp.                                      | 1     | 0.29%   | Yes    | Unknown  |           | 6  | CG       |
| Planariidae                                        |       |         |        |          |           |    |          |
| Polycelis sp.                                      | 2     | 0.59%   | Yes    | Unknown  |           | 1  | OM       |
| Planorbidae                                        |       |         |        |          |           |    |          |
| Planorbidae                                        | 1     | 0.29%   | Yes    | Immature |           | 6  | SC       |
| Oligochaeta                                        |       |         |        |          |           |    |          |
| Lumbriculidae                                      |       |         |        |          |           |    |          |
| Lumbriculidae                                      | 3     | 0.88%   | Yes    | Unknown  | Damaged   | 4  | CG       |
| Naididae                                           |       |         |        |          |           |    |          |
| Tubificinae                                        | 1     | 0.29%   | Yes    | Immature |           | 11 | CG       |
| Ephemeroptera                                      |       |         |        |          |           |    |          |
| Baetidae                                           |       |         |        |          |           |    |          |
| Baetis tricaudatus                                 | 94    | 27.65%  | Yes    | Larva    |           | 4  | CG       |
| Diphetor hageni                                    | 1     | 0.29%   | Yes    | Larva    |           | 5  | CG       |
| Heptageniidae                                      |       |         |        |          |           |    |          |
| <i>Cinygma</i> sp.                                 | 2     | 0.59%   | Yes    | Larva    |           | 0  | SC       |
| Plecoptera                                         |       |         |        |          |           |    |          |
| Chloroperlidae                                     |       |         |        |          |           |    |          |
| Sweltsa sp.                                        | 1     | 0.29%   | Yes    | Larva    |           | 0  | PR       |
| Nemouridae                                         |       |         |        |          |           |    |          |
| Malenka sp.                                        | 7     | 2.06%   | Yes    | Larva    |           | 1  | SH       |
| Zapada cinctipes                                   | 1     | 0.29%   | Yes    | Larva    |           | 3  | SH       |
| Perlodidae                                         | _     |         |        |          |           |    |          |
| Skwala sp.                                         | 2     | 0.59%   | Yes    | Larva    |           | 3  | PR       |
| Pteronarcyidae                                     |       |         |        |          |           | _  |          |
| Pteronarcys princeps                               | 1     | 0.29%   | Yes    | Larva    |           | 0  | SH       |
| Trichoptera                                        |       |         |        |          |           |    |          |
| Glossosomatidae                                    |       |         | .,     |          |           |    |          |
| Glossosoma sp.                                     | 15    | 4.41%   | Yes    | Larva    |           | 0  | SC       |
| Glossosomatidae                                    | 1     | 0.29%   | No     | Pupa     |           | 0  | SC       |
| Hydropsychidae                                     | 0.4   | 47.040/ |        |          |           | _  | 0.5      |
| Hydropsyche sp.                                    | 61    | 17.94%  | Yes    | Larva    |           | 5  | CF       |
| Lepidostomatidae                                   |       | 4.4007  |        |          |           |    | 011      |
| Lepidostoma sp.                                    | 4     | 1.18%   | Yes    | Larva    |           | 1  | SH       |
| Philopotamidae                                     | _     | 0.000/  |        |          |           |    | 0.5      |
| Dolophilodes sp.                                   | 1     | 0.29%   | Yes    | Larva    |           | 0  | CF       |
| Rhyacophilidae<br>Rhyacophila Betteni Gr.          | 4     | 0.000/  | V      | Lames    |           | 0  | DD       |
|                                                    | 1     | 0.29%   | Yes    | Larva    |           | 0  | PR       |
| Coleoptera                                         |       |         |        |          |           |    |          |
| Elmidae<br>Heterlimnius corpulentus                | 4     | 0.000/  | V      | Λ dι ·!+ |           | 2  | 00       |
| Heterlimnius corpulentus  Heterlimnius corpulentus | 1     | 0.29%   | Yes    | Adult    |           | 3  | CG       |
| เ เอเอเมเทเเนง เปเมนโซกแนง                         | 3     | 0.88%   | No     | Larva    |           | 3  | CG       |

Project ID: CB14LD

RAI No.: CB14LD004

RAI No.: CB14LD004 Sta. Name: Lewis I-90 Rep 1

Client ID: Lewis I 90 Rep 1

| Taxonomic Name                   | Count | PRA    | Unique | Stage | Qualifier | ВІ | Function |
|----------------------------------|-------|--------|--------|-------|-----------|----|----------|
| Diptera                          |       |        |        |       |           |    |          |
| Dixidae                          |       |        |        |       |           |    |          |
| <i>Dixa</i> sp.                  | 1     | 0.29%  | Yes    | Larva |           | 1  | CG       |
| Empididae                        |       |        |        |       |           |    |          |
| Empididae                        | 1     | 0.29%  | No     | Pupa  |           | 6  | PR       |
| Empididae sp. (RAI Taxon # 0001) | 1     | 0.29%  | Yes    | Larva |           | 6  | PR       |
| Neoplasta sp.                    | 1     | 0.29%  | Yes    | Larva |           | 5  | PR       |
| Simuliidae                       |       |        |        |       |           |    |          |
| Simulium sp.                     | 27    | 7.94%  | Yes    | Larva |           | 6  | CF       |
| Simulium sp.                     | 2     | 0.59%  | No     | Pupa  |           | 6  | CF       |
| Tipulidae                        |       |        |        |       |           |    |          |
| Antocha monticola                | 2     | 0.59%  | Yes    | Larva |           | 3  | CG       |
| Chironomidae                     |       |        |        |       |           |    |          |
| Chironomidae                     |       |        |        |       |           |    |          |
| Polypedilum sp.                  | 41    | 12.06% | Yes    | Larva |           | 6  | SH       |
| Micropsectra sp.                 | 3     | 0.88%  | Yes    | Larva |           | 4  | CG       |
| Rheotanytarsus sp.               | 1     | 0.29%  | Yes    | Pupa  |           | 6  | CF       |
| <i>Brillia</i> sp.               | 8     | 2.35%  | Yes    | Larva |           | 4  | SH       |
| Eukiefferiella tirolensis        | 2     | 0.59%  | Yes    | Larva |           | 8  | CG       |
| Parametriocnemus sp.             | 38    | 11.18% | Yes    | Larva |           | 5  | CG       |
| Sample Count                     | 340   |        |        |       |           |    |          |

Project ID: CB14LD

RAI No.: CB14LD005

RAI No.: CB14LD005 Sta. Name: Lewis I-90 Rep 2

Client ID: Lewis I 90 Rep 2

| Taxonomic Name          | Count | PRA    | Unique | Stage   | Qualifier    | ВІ | Function |
|-------------------------|-------|--------|--------|---------|--------------|----|----------|
| Other Non-Insect        |       |        |        |         |              |    |          |
| Nemata                  | 3     | 0.66%  | Yes    | Unknown |              | 5  | UN       |
| Acari                   | 19    | 4.16%  | Yes    | Unknown |              | 5  | PR       |
| Ancylidae               |       |        |        |         |              |    |          |
| Ferrissia sp.           | 1     | 0.22%  | Yes    | Unknown |              | 6  | SC       |
| Crangonyctidae          |       |        |        |         |              |    |          |
| Crangonyx sp.           | 4     | 0.88%  | Yes    | Unknown |              | 6  | CG       |
| Planariidae             |       |        |        |         |              |    |          |
| Polycelis sp.           | 3     | 0.66%  | Yes    | Unknown |              | 1  | OM       |
| Sphaeriidae             |       |        |        |         |              |    |          |
| Sphaeriidae             | 2     | 0.44%  | Yes    | Unknown |              | 8  | CF       |
| Tetrastemmatidae        |       |        |        |         |              |    |          |
| Prostoma sp.            | 3     | 0.66%  | Yes    | Unknown |              | 11 | PR       |
| Oligochaeta             |       |        |        |         |              |    |          |
| Lumbriculidae           |       |        |        |         |              |    |          |
| Lumbriculidae           | 22    | 4.81%  | Yes    | Unknown | Damaged      | 4  | CG       |
| Ephemeroptera           |       |        |        |         |              |    |          |
| Baetidae                |       |        |        |         |              |    |          |
| Baetis tricaudatus      | 48    | 10.50% | Yes    | Larva   |              | 4  | CG       |
| Plecoptera              |       |        |        |         |              |    |          |
| Chloroperlidae          |       |        |        |         |              |    |          |
| Sweltsa sp.             | 1     | 0.22%  | Yes    | Larva   |              | 0  | PR       |
| Nemouridae              |       |        |        |         |              |    |          |
| Malenka sp.             | 8     | 1.75%  | Yes    | Larva   |              | 1  | SH       |
| Zapada sp.              | 1     | 0.22%  | Yes    | Larva   | Early Instar | 2  | SH       |
| Perlodidae              |       |        |        |         |              |    |          |
| Skwala sp.              | 1     | 0.22%  | Yes    | Larva   |              | 3  | PR       |
| Trichoptera             |       |        |        |         |              |    |          |
| Brachycentridae         |       |        |        |         |              |    |          |
| <i>Micrasema</i> sp.    | 1     | 0.22%  | Yes    | Larva   |              | 1  | SH       |
| Glossosomatidae         |       |        |        |         |              |    |          |
| Glossosoma sp.          | 17    | 3.72%  | Yes    | Larva   |              | 0  | SC       |
| Glossosomatidae         | 16    | 3.50%  | No     | Pupa    |              | 0  | SC       |
| Hydropsychidae          |       |        |        |         |              |    |          |
| Hydropsyche sp.         | 186   | 40.70% | Yes    | Larva   |              | 5  | CF       |
| Lepidostomatidae        |       |        |        |         |              |    |          |
| Lepidostoma sp.         | 1     | 0.22%  | Yes    | Larva   |              | 1  | SH       |
| Limnephilidae           |       |        |        |         |              |    |          |
| Dicosmoecus atripes     | 2     | 0.44%  | Yes    | Larva   |              | 1  | SC       |
| Limnephilidae           | 1     | 0.22%  | No     | Pupa    |              | 3  | SH       |
| Rhyacophilidae          |       |        |        |         |              |    |          |
| Rhyacophila Betteni Gr. | 6     | 1.31%  | Yes    | Larva   |              | 0  | PR       |
| Rhyacophila grandis     | 1     | 0.22%  | Yes    | Larva   |              | 1  | PR       |
|                         |       |        |        |         |              |    |          |

Project ID: CB14LD

RAI No.: CB14LD005

RAI No.: CB14LD005 Sta. Name: Lewis I-90 Rep 2

Client ID: Lewis I 90 Rep 2

| Taxonomic Name                   | Count | PRA    | Unique | Stage | Qualifier | ВІ | Function |
|----------------------------------|-------|--------|--------|-------|-----------|----|----------|
| Coleoptera                       |       |        |        |       |           |    |          |
| Elmidae                          |       |        |        |       |           |    |          |
| Heterlimnius corpulentus         | 37    | 8.10%  | Yes    | Larva |           | 3  | CG       |
| Lara sp.                         | 1     | 0.22%  | Yes    | Larva |           | 1  | SH       |
| Narpus concolor                  | 1     | 0.22%  | Yes    | Adult |           | 2  | CG       |
| Narpus concolor                  | 4     | 0.88%  | No     | Larva |           | 2  | CG       |
| Zaitzevia sp.                    | 3     | 0.66%  | Yes    | Adult |           | 5  | CG       |
| Zaitzevia sp.                    | 1     | 0.22%  | No     | Larva |           | 5  | CG       |
| Diptera                          |       |        |        |       |           |    |          |
| Empididae                        |       |        |        |       |           |    |          |
| Empididae sp. (RAI Taxon # 0001) | 1     | 0.22%  | Yes    | Larva |           | 6  | PR       |
| Simuliidae                       |       |        |        |       |           |    |          |
| Simulium sp.                     | 11    | 2.41%  | Yes    | Larva |           | 6  | CF       |
| Chironomidae                     |       |        |        |       |           |    |          |
| Chironomidae                     |       |        |        |       |           |    |          |
| Polypedilum sp.                  | 46    | 10.07% | Yes    | Larva |           | 6  | SH       |
| Micropsectra sp.                 | 1     | 0.22%  | Yes    | Larva |           | 4  | CG       |
| Tanytarsini                      | 1     | 0.22%  | No     | Larva | Damaged   | 6  | CF       |
| <i>Brillia</i> sp.               | 2     | 0.44%  | Yes    | Larva | -         | 4  | SH       |
| Chaetocladius sp.                | 1     | 0.22%  | Yes    | Larva |           | 6  | CG       |
| Sample Count                     | 457   |        |        |       |           |    |          |

Project ID: CB14LD

RAI No.: CB14LD006

RAI No.: CB14LD006 Sta. Name: Lewis I-90 Rep 3

Client ID: Lewis I 90 Rep 3

| Other Non-Insect         |    |        |     |         |   |    |
|--------------------------|----|--------|-----|---------|---|----|
| Acari                    | 8  | 14.04% | Yes | Unknown | 5 | PR |
| Crangonyctidae           |    |        |     |         |   |    |
| Crangonyx sp.            | 1  | 1.75%  | Yes | Unknown | 6 | CG |
| Ephemeroptera            |    |        |     |         |   |    |
| Baetidae                 |    |        |     |         |   |    |
| Baetis tricaudatus       | 4  | 7.02%  | Yes | Larva   | 4 | CG |
| Plecoptera               |    |        |     |         |   |    |
| Chloroperlidae           |    |        |     |         |   |    |
| Sweltsa sp.              | 1  | 1.75%  | Yes | Larva   | 0 | PR |
| Perlodidae               |    |        |     |         |   |    |
| Skwala sp.               | 1  | 1.75%  | Yes | Larva   | 3 | PR |
| Trichoptera              |    |        |     |         |   |    |
| Glossosomatidae          |    |        |     |         |   |    |
| Glossosoma sp.           | 3  | 5.26%  | Yes | Larva   | 0 | SC |
| Glossosomatidae          | 2  | 3.51%  | No  | Pupa    | 0 | SC |
| Hydropsychidae           |    |        |     |         | • |    |
| Hydropsyche sp.          | 8  | 14.04% | Yes | Larva   | 5 | CF |
| Limnephilidae            |    |        |     |         |   |    |
| Dicosmoecus atripes      | 3  | 5.26%  | Yes | Larva   | 1 | SC |
| Coleoptera               |    |        |     |         |   |    |
| Elmidae                  |    |        |     |         |   |    |
| Heterlimnius corpulentus | 1  | 1.75%  | Yes | Adult   | 3 | CG |
| Heterlimnius corpulentus | 18 | 31.58% | No  | Larva   | 3 | CG |
| Lara sp.                 | 1  | 1.75%  | Yes | Larva   | 1 | SH |
| Diptera                  |    |        |     |         |   |    |
| Tipulidae                |    |        |     |         |   |    |
| Antocha monticola        | 1  | 1.75%  | Yes | Larva   | 3 | CG |
| Chironomidae             |    |        |     |         |   |    |
| Chironomidae             |    |        |     |         |   |    |
| Polypedilum sp.          | 3  | 5.26%  | Yes | Larva   | 6 | SH |
| Rheotanytarsus sp.       | 1  | 1.75%  | Yes | Pupa    | 6 | CF |
| <i>Brillia</i> sp.       | 1  | 1.75%  | Yes | Larva   | 4 | SH |
| Sample Cou               |    | •      |     |         |   | -  |

Project ID: CB14LD

RAI No.: CB14LD007

RAI No.: CB14LD007 Sta. Name: Kelsey Peltzer Rep 1

Client ID: Kelsey Peltzer 1A-E

| Taxonomic Name                 | Count | PRA     | Unique | Stage               | Qualifier | ВІ | Function |
|--------------------------------|-------|---------|--------|---------------------|-----------|----|----------|
| Other Non-Insect               |       |         |        |                     |           |    |          |
| Turbellaria                    | 11    | 2.00%   | Yes    | Unknown             |           | 4  | PR       |
| Nemata                         | 6     | 1.09%   | Yes    | Unknown             |           | 5  | UN       |
| Acari                          | 2     | 0.36%   | Yes    | Unknown             |           | 5  | PR       |
| Asellidae                      |       |         |        |                     |           |    |          |
| Caecidotea sp.                 | 38    | 6.90%   | Yes    | Unknown             |           | 8  | CG       |
| Crangonyctidae                 |       |         |        |                     |           |    |          |
| Crangonyx sp.                  | 74    | 13.43%  | Yes    | Unknown             |           | 6  | CG       |
| Oligochaeta                    |       |         |        |                     |           |    |          |
| Lumbriculidae                  |       |         |        |                     |           |    |          |
| Lumbriculidae                  | 3     | 0.54%   | Yes    | Unknown             | Damaged   | 4  | CG       |
| Naididae                       | · ·   | 0.0 170 |        | <b>5</b> 1111151111 | 2 aago a  |    |          |
| Nais sp.                       | 1     | 0.18%   | Yes    | Unknown             |           | 8  | CG       |
| Ephemeroptera                  | '     | 0.1070  | 103    | OHKHOWH             |           | O  | 00       |
| Baetidae                       |       |         |        |                     |           |    |          |
| Baetis tricaudatus             | 24    | 4.36%   | Voo    | Larva               |           | 4  | CG       |
|                                | 24    | 4.30%   | Yes    | Larva               |           | 4  | CG       |
| Plecoptera                     |       |         |        |                     |           |    |          |
| Nemouridae<br>Malanka ap       | 00    | 0.500/  | V      | 1                   |           | 4  | 011      |
| Malenka sp.                    | 36    | 6.53%   | Yes    | Larva               |           | 1  | SH       |
| Zapada cinctipes               | 1     | 0.18%   | Yes    | Larva               |           | 3  | SH       |
| Trichoptera                    |       |         |        |                     |           |    |          |
| Hydropsychidae                 |       |         |        | _                   |           |    |          |
| Hydropsychidae                 | 2     | 0.36%   | No     | Pupa                |           | 4  | CF       |
| Parapsyche sp.                 | 27    | 4.90%   | Yes    | Larva               |           | 0  | PR       |
| Rhyacophilidae                 |       |         |        |                     |           |    |          |
| Rhyacophila Brunnea/Vemna Gr.  | 1     | 0.18%   | Yes    | Larva               |           | 2  | PR       |
| Diptera                        |       |         |        |                     |           |    |          |
| Ceratopogonidae                |       |         |        |                     |           |    |          |
| Forcipomyiinae                 | 1     | 0.18%   | Yes    | Larva               |           | 6  | PR       |
| Empididae                      |       |         |        |                     |           |    |          |
| Neoplasta sp.                  | 1     | 0.18%   | Yes    | Larva               |           | 5  | PR       |
| Simuliidae                     |       |         |        |                     |           |    |          |
| Simulium sp.                   | 37    | 6.72%   | No     | Pupa                |           | 6  | CF       |
| Simulium sp.                   | 230   | 41.74%  | Yes    | Larva               |           | 6  | CF       |
| Tipulidae                      |       |         |        |                     |           |    |          |
| Dicranota sp.                  | 3     | 0.54%   | Yes    | Larva               |           | 3  | PR       |
| Chironomidae                   |       |         |        |                     |           |    |          |
| Chironomidae                   |       |         |        |                     |           |    |          |
| Micropsectra sp.               | 6     | 1.09%   | Yes    | Larva               |           | 4  | CG       |
| Rheotanytarsus sp.             | 1     | 0.18%   | Yes    | Larva               |           | 6  | CF       |
| Pagastia sp.                   | 1     | 0.18%   | Yes    | Larva               |           | 1  | CG       |
| Eukiefferiella Claripennis Gr. | 32    | 5.81%   | Yes    | Larva               |           | 8  | CG       |
| Parametriocnemus sp.           | 6     | 1.09%   | Yes    | Larva               |           | 5  | CG       |
| Tvetenia sp.                   | 1     | 0.18%   | No     | Pupa                |           | 5  | CG       |
| Tvetenia Bavarica Gr.          | 5     | 0.10%   | Yes    | Larva               |           | 5  | CG       |
| Conchapelopia sp.              |       |         |        |                     |           |    | PR       |
| ουποπαροιορία δρ.              | 1     | 0.18%   | Yes    | Larva               |           | 6  | PK       |

Project ID: CB14LD

RAI No.: CB14LD007

RAI No.: CB14LD007 Sta. Name: Kelsey Peltzer Rep 1

Client ID: Kelsey Peltzer 1A-E

**Date Coll.:** 8/29/2014 **No. Jars:** 5 **STORET ID:** 

Taxonomic Name Count PRA Unique Stage Qualifier BI Function

Sample Count 551

Project ID: CB14LD

RAI No.: CB14LD008

RAI No.: CB14LD008 Sta. Name: Kelsey Farm

Client ID: Kelsey Farm 1-6

Tuesday, March 10, 2015

| Taxonomic Name                   | Count | PRA    | Unique | Stage   | Qualifier    | ВІ | Function |
|----------------------------------|-------|--------|--------|---------|--------------|----|----------|
| Other Non-Insect                 |       |        |        |         |              |    |          |
| Turbellaria                      | 23    | 4.08%  | Yes    | Unknown |              | 4  | PR       |
| Acari                            | 1     | 0.18%  | Yes    | Unknown |              | 5  | PR       |
| Asellidae                        |       |        |        |         |              |    |          |
| Caecidotea sp.                   | 2     | 0.35%  | Yes    | Unknown |              | 8  | CG       |
| Crangonyctidae                   |       |        |        |         |              |    |          |
| Crangonyx sp.                    | 16    | 2.84%  | Yes    | Unknown |              | 6  | CG       |
| Hydrobiidae                      |       |        |        |         |              |    |          |
| Potamopyrgus antipodarum         | 165   | 29.26% | Yes    | Unknown |              | 8  | SC       |
| Oligochaeta                      |       |        |        |         |              |    |          |
| Lumbriculidae                    |       |        |        |         |              |    |          |
| Lumbriculidae                    | 13    | 2.30%  | Yes    | Unknown | Damaged      | 4  | CG       |
| Naididae                         |       |        |        |         | · ·          |    |          |
| Pristina sp.                     | 1     | 0.18%  | Yes    | Unknown |              | 8  | CG       |
| Ephemeroptera                    |       |        |        |         |              |    |          |
| Baetidae                         |       |        |        |         |              |    |          |
| Baetis tricaudatus               | 116   | 20.57% | Yes    | Larva   |              | 4  | CG       |
| Plecoptera                       |       |        |        |         |              |    |          |
| Nemouridae                       |       |        |        |         |              |    |          |
| Malenka sp.                      | 1     | 0.18%  | Yes    | Larva   |              | 1  | SH       |
| Coleoptera                       |       |        |        |         |              |    |          |
| Elmidae                          |       |        |        |         |              |    |          |
| Optioservus sp.                  | 1     | 0.18%  | Yes    | Larva   |              | 5  | SC       |
| Diptera                          |       |        |        |         |              |    |          |
| Simuliidae                       |       |        |        |         |              |    |          |
| Simulium sp.                     | 17    | 3.01%  | Yes    | Larva   |              | 6  | CF       |
| Tipulidae                        |       |        |        |         |              |    |          |
| Antocha monticola                | 3     | 0.53%  | Yes    | Larva   |              | 3  | CG       |
| Chironomidae                     |       |        |        |         |              |    |          |
| Chironomidae                     |       |        |        |         |              |    |          |
| Chironomini                      | 1     | 0.18%  | No     | Larva   | Early Instar | 6  | CG       |
| Cladotanytarsus sp.              | 2     | 0.35%  | Yes    | Larva   | ,            | 7  | CG       |
| Micropsectra sp.                 | 3     | 0.53%  | Yes    | Larva   |              | 4  | CG       |
| Rheotanytarsus sp.               | 119   | 21.10% | Yes    | Larva   |              | 6  | CF       |
| Rheotanytarsus sp.               | 26    | 4.61%  | No     | Pupa    |              | 6  | CF       |
| Corynoneura sp.                  | 1     | 0.18%  | Yes    | Larva   |              | 7  | CG       |
| Cricotopus (Cricotopus) sp.      | 1     | 0.18%  | Yes    | Larva   |              | 7  | SH       |
| Eukiefferiella sp.               | 2     | 0.35%  | No     | Pupa    |              | 8  | CG       |
| Eukiefferiella Claripennis Gr.   | 3     | 0.53%  | Yes    | Larva   |              | 8  | CG       |
| Eukiefferiella Devonica Gr.      | 1     | 0.18%  | Yes    | Larva   |              | 8  | CG       |
| Eukiefferiella Pseudomontana Gr. | 22    | 3.90%  | Yes    | Larva   |              | 8  | CG       |
| Orthocladius sp.                 | 4     | 0.71%  | Yes    | Larva   |              | 6  | CG       |
| Parametriocnemus sp.             | 3     | 0.53%  | Yes    | Larva   |              | 5  | CG       |
| Thienemanniella sp.              | 2     | 0.35%  | Yes    | Larva   |              | 6  | CG       |
| Tvetenia Bavarica Gr.            | 14    | 2.48%  | Yes    | Larva   |              | 5  | CG       |
| Thienemannimyia Gr.              | 1     | 0.18%  | Yes    | Larva   |              | 5  | PR       |

Project ID: CB14LD

RAI No.: CB14LD008

RAI No.: CB14LD008 Sta. Name: Kelsey Farm

Client ID: Kelsey Farm 1-6

**Date Coll.:** 9/2/2014 **No. Jars:** 6 **STORET ID:** 

Taxonomic Name Count PRA Unique Stage Qualifier BI Function

Sample Count 564

Project ID: CB14LD

RAI No.: CB14LD009

RAI No.: CB14LD009 Sta. Name: Sunset SE 30th

Client ID: Sunset SE 30th Rep 1A-D

| Taxonomic Name                 | Count   | PRA    | Unique | Stage   | Qualifier | ВІ | Function |
|--------------------------------|---------|--------|--------|---------|-----------|----|----------|
| Other Non-Insect               |         |        |        |         |           |    |          |
| Turbellaria                    | 56      | 10.20% | Yes    | Unknown |           | 4  | PR       |
| Nemata                         | 1       | 0.18%  | Yes    | Unknown |           | 5  | UN       |
| Acari                          | 2       | 0.36%  | Yes    | Unknown |           | 5  | PR       |
| Crangonyctidae                 |         |        |        |         |           |    |          |
| Crangonyx sp.                  | 135     | 24.59% | Yes    | Unknown |           | 6  | CG       |
| Oligochaeta                    |         |        |        |         |           |    |          |
| Lumbriculidae                  |         |        |        |         |           |    |          |
| Lumbriculidae                  | 3       | 0.55%  | Yes    | Unknown | Damaged   | 4  | CG       |
| Ephemeroptera                  |         |        |        |         | -         |    |          |
| Baetidae                       |         |        |        |         |           |    |          |
| Baetis tricaudatus             | 155     | 28.23% | Yes    | Larva   |           | 4  | CG       |
| Plecoptera                     |         |        |        |         |           |    |          |
| Nemouridae                     |         |        |        |         |           |    |          |
| Malenka sp.                    | 40      | 7.29%  | Yes    | Larva   |           | 1  | SH       |
| Trichoptera                    |         |        |        |         |           |    |          |
| Lepidostomatidae               |         |        |        |         |           |    |          |
| Lepidostoma sp.                | 1       | 0.18%  | Yes    | Larva   |           | 1  | SH       |
| Lepidostoma sp.                | 1       | 0.18%  | No     | Pupa    |           | 1  | SH       |
| Diptera                        |         |        |        |         |           |    |          |
| Simuliidae                     |         |        |        |         |           |    |          |
| Simulium sp.                   | 129     | 23.50% | Yes    | Larva   |           | 6  | CF       |
| Simulium sp.                   | 16      | 2.91%  | No     | Pupa    |           | 6  | CF       |
| Tipulidae                      |         |        |        | •       |           |    |          |
| Dicranota sp.                  | 1       | 0.18%  | Yes    | Larva   |           | 3  | PR       |
| Chironomidae                   |         |        |        |         |           |    |          |
| Chironomidae                   |         |        |        |         |           |    |          |
| Phaenopsectra sp.              | 2       | 0.36%  | Yes    | Larva   |           | 7  | SC       |
| Cricotopus (Cricotopus) sp.    | 2       | 0.36%  | Yes    | Larva   |           | 7  | SH       |
| Eukiefferiella Claripennis Gr. | 4       | 0.73%  | Yes    | Larva   |           | 8  | CG       |
| Tvetenia tshernovskii          | 1       | 0.18%  | Yes    | Larva   |           | 5  | CG       |
| Sample Cou                     | ınt 549 |        |        |         |           |    |          |

Project ID: CB14LD RAI No.: CB14LD001

Sta. Name: Unnamed Trib (Vasa) Rep 1 Client ID: 0160 S. of Vasa Rep 1

STORET ID Coll. Date: 8/19/2014

Longitude: Latitude:

#### Abundance Measures

Sample Count:

140.00 100.00% of sample used Sample Abundance:

Coll. Procedure: Surber

Sample Notes:

#### **Taxonomic Composition**

| Category         | R | Α  | PRA    |
|------------------|---|----|--------|
| Terrestrial      |   |    |        |
| Other Non-Insect | 2 | 5  | 3.57%  |
| Oligochaeta      | 2 | 3  | 2.14%  |
| Odonata          |   |    |        |
| Ephemeroptera    | 4 | 53 | 37.86% |
| Plecoptera       | 3 | 20 | 14.29% |
| Heteroptera      |   |    |        |
| Megaloptera      |   |    |        |
| Neuroptera       |   |    |        |
| Trichoptera      | 3 | 52 | 37.14% |
| Lepidoptera      |   |    |        |
| Coleoptera       | 1 | 2  | 1.43%  |
| Diptera          | 1 | 5  | 3.57%  |
| Chironomidae     |   |    |        |

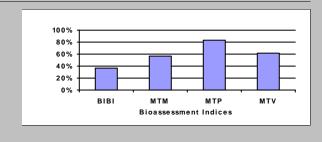


#### Dominant Taxa

| Category                | Α  | PRA    |
|-------------------------|----|--------|
| Baetis tricaudatus      | 41 | 29.29% |
| Hydropsyche             | 31 | 22.14% |
| Glossosoma              | 18 | 12.86% |
| Sweltsa                 | 11 | 7.86%  |
| Pteronarcys princeps    | 8  | 5.71%  |
| Cinyama                 | 8  | 5.71%  |
| Simulium                | 5  | 3.57%  |
| Polycelis               | 3  | 2.14%  |
| Lara                    | 2  | 1.43%  |
| Ironodes                | 2  | 1.43%  |
| Glossosomatidae         | 2  | 1.43%  |
| Fridericia              | 2  | 1.43%  |
| Diphetor hageni         | 2  | 1.43%  |
| Acari                   | 2  | 1.43%  |
| Rhyacophila Betteni Gr. | 1  | 0.71%  |



| Predator             | 3 | 14 | 10.00% |
|----------------------|---|----|--------|
| Parasite             |   |    |        |
| Collector Gatherer   | 4 | 46 | 32.86% |
| Collector Filterer   | 2 | 36 | 25.71% |
| Macrophyte Herbivore |   |    |        |
| Piercer Herbivore    |   |    |        |
| Xylophage            |   |    |        |
| Scraper              | 3 | 30 | 21.43% |
| Shredder             | 3 | 11 | 7.86%  |
| Omnivore             | 1 | 3  | 2.14%  |
| Unknown              |   |    |        |
|                      |   |    |        |




#### Metric Values and Scores

| Metric                                                                                                                                                                                                                                                                      | Value                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Composition                                                                                                                                                                                                                                                                 |                                                                                        |
| Taxa Richness E Richness P Richness P Richness T Richness EPT Richness EPT Percent All Non-Insect Abundance All Non-Insect Richness All Non-Insect Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera Dominance Dominant Taxon Percent | 16<br>4<br>3<br>3<br>10<br>89.29%<br>8<br>4<br>5.71%<br>2.14%<br>0.811<br>0.596        |
| Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent                                                                                                                                                                                              | 51.43%<br>64.29%<br>92.14%                                                             |
| Diversity                                                                                                                                                                                                                                                                   |                                                                                        |
| Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness Function                                                                                                                                                                                                    | 2.111<br>3.045<br>3.044<br>0.166<br>0.095                                              |
| Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer                                                                                                                  | 3<br>10.00%<br>2<br>25.71%<br>58.57%<br>29.29%<br>0.833<br>0.455                       |
| Habit                                                                                                                                                                                                                                                                       |                                                                                        |
| Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent Characteristics                                                                                                                                                        | 1<br>0.71%<br>2<br>30.71%<br>10<br>63.57%                                              |
|                                                                                                                                                                                                                                                                             |                                                                                        |
| Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent                                                                                                                            | 2<br>11.43%<br>0<br>0.00%                                                              |
| Voltinism                                                                                                                                                                                                                                                                   | 0.0078                                                                                 |
| Univoltine Richness Semivoltine Richness Multivoltine Percent Tolerance                                                                                                                                                                                                     | 9<br>2<br>34.29%                                                                       |
| Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent CTQa            | 1<br>0.71%<br>1<br>12.86%<br>4.111<br>2<br>0.00%<br>2.761<br>39.29%<br>0.00%<br>62.000 |

#### **Bioassessment Indices**

| BioIndex | Description                                      | Score | Pct    | Rating |
|----------|--------------------------------------------------|-------|--------|--------|
| BIBI     | B-IBI (Karr et al.)                              | 18    | 36.00% |        |
| MTP      | Montana DEQ Plains (Bukantis 1998)               | 25    | 83.33% | None   |
| MTV      | Montana Revised Valleys/Foothills (Bollman 1998) | 11    | 61.11% | Slight |
| MTM      | Montana DEQ Mountains (Bukantis 1998)            | 12    | 57.14% | Slight |



Project ID: CB14LD RAI No.: CB14LD002

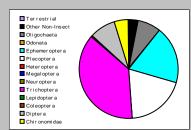
Sta. Name: Unnamed Trib (Vasa) Rep 2 Client ID: 0160 S. of Vasa Rep 2

STORET ID Coll. Date: 8/19/2014

Latitude: Longitude:

#### Abundance Measures

Sample Count:


185.00 100.00% of sample used Sample Abundance:

Coll. Procedure: Surber

Sample Notes:

#### **Taxonomic Composition**

| Category         | R | Α  | PRA    |
|------------------|---|----|--------|
| Terrestrial      |   |    |        |
| Other Non-Insect | 5 | 6  | 3.24%  |
| Oligochaeta      | 4 | 14 | 7.57%  |
| Odonata          |   |    |        |
| Ephemeroptera    | 3 | 35 | 18.92% |
| Plecoptera       | 6 | 35 | 18.92% |
| Heteroptera      |   |    |        |
| Megaloptera      |   |    |        |
| Neuroptera       |   |    |        |
| Trichoptera      | 3 | 70 | 37.84% |
| Lepidoptera      |   |    |        |
| Coleoptera       | 1 | 1  | 0.54%  |
| Diptera          | 1 | 16 | 8.65%  |
| Chironomidae     | 3 | 8  | 4.32%  |

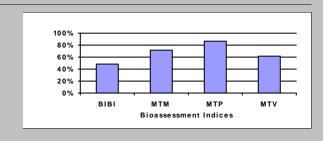


#### Dominant Taxa

| Category           | Α  | PRA    |
|--------------------|----|--------|
| Hydropsyche        | 35 | 18.92% |
| Sweltsa            | 29 | 15.68% |
| Baetis tricaudatus | 29 | 15.68% |
| Glossosoma         | 25 | 13.51% |
| Simulium           | 16 | 8.65%  |
| Glossosomatidae    | 7  | 3.78%  |
| Enchytraeus        | 7  | 3.78%  |
| Parametriocnemus   | 6  | 3.24%  |
| Lumbriculidae      | 5  | 2.70%  |
| Cinygma            | 5  | 2.70%  |
| Lepidostoma        | 3  | 1.62%  |
| Zapada cinctipes   | 2  | 1.08%  |
| Planorbidae        | 2  | 1.08%  |
| Brillia            | 1  | 0.54%  |
| Acari              | 1  | 0.54%  |



| Functional Composition |   |    |        |  |  |
|------------------------|---|----|--------|--|--|
| Category               | R | Α  | PRA    |  |  |
| Predator               | 2 | 30 | 16.22% |  |  |
| Parasite               |   |    |        |  |  |
| Collector Gatherer     | 8 | 51 | 27.57% |  |  |
| Collector Filterer     | 3 | 52 | 28.11% |  |  |
| Macrophyte Herbivore   |   |    |        |  |  |
| Piercer Herbivore      |   |    |        |  |  |
| Xylophage              |   |    |        |  |  |
| Scraper                | 4 | 40 | 21.62% |  |  |
| Shredder               | 8 | 11 | 5.95%  |  |  |
| Omnivore               | 1 | 1  | 0.54%  |  |  |
| Unknown                |   |    |        |  |  |




#### Metric Values and Scores

| Wethe values and ocores                                                                                                                                                                                                                                                                                                                          |                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Metric                                                                                                                                                                                                                                                                                                                                           | Value                                                                                  |
| Composition                                                                                                                                                                                                                                                                                                                                      |                                                                                        |
| Composition  Taxa Richness E Richness P Richness P Richness T Richness EPT Richness EPT Percent All Non-Insect Abundance All Non-Insect Richness All Non-Insect Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera Dominance Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent | 26<br>3<br>6<br>3<br>12<br>75.68%<br>20<br>9<br>10.81%<br>7.57%<br>0.857<br>0.500      |
| Diversity                                                                                                                                                                                                                                                                                                                                        |                                                                                        |
| Shannon H (loge)<br>Shannon H (log2)<br>Margalef D<br>Simpson D<br>Evenness                                                                                                                                                                                                                                                                      | 2.423<br>3.495<br>4.830<br>0.120<br>0.073                                              |
| Function                                                                                                                                                                                                                                                                                                                                         |                                                                                        |
| Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer                                                                                                                                                                                       | 2<br>16.22%<br>3<br>28.11%<br>55.68%<br>27.57%<br>0.769<br>0.435                       |
| Habit                                                                                                                                                                                                                                                                                                                                            |                                                                                        |
| Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent                                                                                                                                                                                                                                             | 2<br>3.24%<br>2<br>16.22%<br>10<br>66.49%                                              |
| Characteristics                                                                                                                                                                                                                                                                                                                                  |                                                                                        |
| Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent Voltinism                                                                                                                                                                                       | 3<br>3.78%<br>1<br>1.08%<br>0<br>0.00%                                                 |
| Univoltine Richness<br>Semivoltine Richness<br>Multivoltine Percent                                                                                                                                                                                                                                                                              | 16<br>2<br>21.62%                                                                      |
| Tolerance                                                                                                                                                                                                                                                                                                                                        |                                                                                        |
| Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent CTQa                                                                                 | 2<br>3.78%<br>1<br>13.51%<br>3.849<br>3<br>1.62%<br>2.897<br>40.54%<br>1.62%<br>76.190 |

#### **Bioassessment Indices**

| BioIndex | Description                                      | Score | Pct    | Rating |
|----------|--------------------------------------------------|-------|--------|--------|
| BIBI     | B-IBI (Karr et al.)                              | 24    | 48.00% |        |
| MTP      | Montana DEQ Plains (Bukantis 1998)               | 26    | 86.67% | None   |
| MTV      | Montana Revised Valleys/Foothills (Bollman 1998) | 11    | 61.11% | Slight |
| MTM      | Montana DEQ Mountains (Bukantis 1998)            | 15    | 71.43% | Slight |



Project ID: CB14LD RAI No.: CB14LD003

Sta. Name: Unnamed Trib (Vasa) Rep 3 Client ID: 0160 S. of Vasa Rep 3 STORET ID

Coll. Date: 8/19/2014

Latitude: Longitude:

#### Abundance Measures

Sample Count:

Sample Abundance: 114.00 100.00% of sample used Coll. Procedure: Surber

Sample Notes:

#### **Taxonomic Composition**

| Category         | R | Α  | PRA    |
|------------------|---|----|--------|
| Terrestrial      |   |    |        |
| Other Non-Insect | 2 | 2  | 1.75%  |
| Oligochaeta      | 1 | 2  | 1.75%  |
| Odonata          |   |    |        |
| Ephemeroptera    | 4 | 44 | 38.60% |
| Plecoptera       | 3 | 26 | 22.81% |
| Heteroptera      |   |    |        |
| Megaloptera      |   |    |        |
| Neuroptera       |   |    |        |
| Trichoptera      | 3 | 28 | 24.56% |
| Lepidoptera      |   |    |        |
| Coleoptera       |   |    |        |
| Diptera          | 2 | 9  | 7.89%  |
| Chironomidae     | 2 | 3  | 2.63%  |



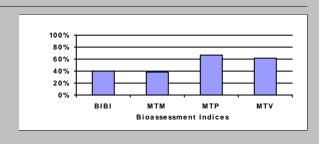
#### Dominant Taxa

| Category           | Α  | PRA    |
|--------------------|----|--------|
| Baetis tricaudatus | 40 | 35.09% |
| Sweltsa            | 23 | 20.18% |
| Hydropsyche        | 20 | 17.54% |
| Simulium           | 8  | 7.02%  |
| Glossosoma         | 7  | 6.14%  |
| Parametriocnemus   | 2  | 1.75%  |
| Leuctridae         | 2  | 1.75%  |
| Fridericia         | 2  | 1.75%  |
| Cinygma            | 2  | 1.75%  |
| Phaenopsectra      | 1  | 0.88%  |
| Limonia            | 1  | 0.88%  |
| Ironodes           | 1  | 0.88%  |
| Diphetor hageni    | 1  | 0.88%  |
| Crangonyx          | 1  | 0.88%  |
| Acari              | 1  | 0.88%  |



#### **Functional Composition**

| Category             | R | Α  | PRA    |
|----------------------|---|----|--------|
| Predator             | 2 | 24 | 21.05% |
| Parasite             |   |    |        |
| Collector Gatherer   | 5 | 46 | 40.35% |
| Collector Filterer   | 3 | 29 | 25.44% |
| Macrophyte Herbivore |   |    |        |
| Piercer Herbivore    |   |    |        |
| Xylophage            |   |    |        |
| Scraper              | 4 | 11 | 9.65%  |
| Shredder             | 3 | 4  | 3.51%  |
| Omnivore             |   |    |        |
| Unknown              |   |    |        |




#### Metric Values and Scores

| Metric                                                                                                                                                                                                                                                                                                                                       | Value                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Composition                                                                                                                                                                                                                                                                                                                                  |                                                                                                               |
| Composition  Taxa Richness E Richness P Richness T Richness T Richness EPT Richness EPT Percent All Non-Insect Abundance All Non-Insect Richness All Non-Insect Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera Dominance Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent | 17<br>4<br>3<br>3<br>10<br>85.96%<br>4<br>3<br>3.51%<br>1.75%<br>0.932<br>0.714<br>35.09%<br>55.26%<br>72.81% |
| Dominant Taxa (10) Percent                                                                                                                                                                                                                                                                                                                   | 93.86%                                                                                                        |
| Diversity Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness Function                                                                                                                                                                                                                                                           | 1.970<br>2.842<br>3.378<br>0.198<br>0.099                                                                     |
| Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer                                                                                                                                                                                   | 2<br>21.05%<br>3<br>25.44%<br>65.79%<br>13.16%<br>0.379<br>0.275                                              |
| Habit                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |
| Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent Characteristics                                                                                                                                                                                                                         | 1<br>0.88%<br>2<br>35.96%<br>10<br>57.89%                                                                     |
| Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent Voltinism                                                                                                                                                                                   | 2<br>3.51%<br>1<br>0.88%<br>1<br>0.88%                                                                        |
| Univoltine Richness<br>Semivoltine Richness<br>Multivoltine Percent                                                                                                                                                                                                                                                                          | 11<br>0<br>39.47%                                                                                             |
| Tolerance  Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent CTQa                                                                  | 1<br>0.88%<br>2<br>7.02%<br>4.424<br>2<br>0.88%<br>3.125<br>31.58%<br>0.00%<br>66.308                         |

#### Bioassessment Indices

| BioIndex | Description                                      | Score | Pct    | Rating   |  |
|----------|--------------------------------------------------|-------|--------|----------|--|
| BIBI     | B-IBI (Karr et al.)                              | 20    | 40.00% |          |  |
| MTP      | Montana DEQ Plains (Bukantis 1998)               | 20    | 66.67% | Slight   |  |
| MTV      | Montana Revised Valleys/Foothills (Bollman 1998) | 11    | 61.11% | Slight   |  |
| MTM      | Montana DEQ Mountains (Bukantis 1998)            | 8     | 38.10% | Moderate |  |



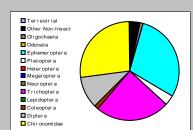
Project ID: CB14LD RAI No.: CB14LD004 Sta. Name: Lewis I-90 Rep 1 Client ID: Lewis I 90 Rep 1 STORET ID

Coll. Date: 8/28/2014

**Latitude:** 47.5620 Longitude: -122.0990

#### Abundance Measures

Sample Count:


Sample Abundance: 340.00 100.00% of sample used

Coll. Procedure: Surber

Sample Notes:

#### **Taxonomic Composition**

| Category         | R | Α  | PRA    |
|------------------|---|----|--------|
| Terrestrial      |   |    |        |
| Other Non-Insect | 5 | 12 | 3.53%  |
| Oligochaeta      | 2 | 4  | 1.18%  |
| Odonata          |   |    |        |
| Ephemeroptera    | 3 | 97 | 28.53% |
| Plecoptera       | 5 | 12 | 3.53%  |
| Heteroptera      |   |    |        |
| Megaloptera      |   |    |        |
| Neuroptera       |   |    |        |
| Trichoptera      | 5 | 83 | 24.41% |
| Lepidoptera      |   |    |        |
| Coleoptera       | 1 | 4  | 1.18%  |
| Diptera          | 5 | 35 | 10.29% |
| Chironomidae     | 6 | 93 | 27.35% |



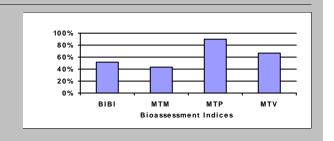
#### Dominant Taxa

| Category                 | Α  | PRA    |
|--------------------------|----|--------|
| Baetis tricaudatus       | 94 | 27.65% |
| Hydropsyche              | 61 | 17.94% |
| Polypedilum              | 41 | 12.06% |
| Parametriocnemus         | 38 | 11.18% |
| Simulium                 | 29 | 8.53%  |
| Glossosoma               | 15 | 4.41%  |
| Brillia                  | 8  | 2.35%  |
| Malenka                  | 7  | 2.06%  |
| Acari                    | 7  | 2.06%  |
| Lepidostoma              | 4  | 1.18%  |
| Heterlimnius corpulentus | 4  | 1.18%  |
| Micropsectra             | 3  | 0.88%  |
| Lumbriculidae            | 3  | 0.88%  |
| Skwala                   | 2  | 0.59%  |
| Antocha monticola        | 2  | 0.59%  |



#### **Functional Composition**

| Category             | ĸ  | Α   | PKA    |
|----------------------|----|-----|--------|
| Predator             | 6  | 14  | 4.12%  |
| Parasite             |    |     |        |
| Collector Gatherer   | 11 | 150 | 44.12% |
| Collector Filterer   | 4  | 92  | 27.06% |
| Macrophyte Herbivore |    |     |        |
| Piercer Herbivore    |    |     |        |
| Xylophage            |    |     |        |
| Scraper              | 3  | 19  | 5.59%  |
| Shredder             | 6  | 62  | 18.24% |
| Omnivore             | 1  | 2   | 0.59%  |
| Unknown              | 1  | 1   | 0.29%  |
|                      |    |     |        |




#### Metric Values and Scores

| Metric                                                                                                                                                                                                                                                                      | Value                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Composition                                                                                                                                                                                                                                                                 |                                                                                       |
| Taxa Richness E Richness P Richness P Richness T Richness EPT Richness EPT Percent All Non-Insect Abundance All Non-Insect Richness All Non-Insect Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera Dominance Dominant Taxon Percent | 32<br>3<br>5<br>5<br>13<br>56.47%<br>16<br>7<br>4.71%<br>1.18%<br>0.979<br>0.735      |
| Dominant Taxa (2) Percent<br>Dominant Taxa (3) Percent<br>Dominant Taxa (10) Percent                                                                                                                                                                                        | 45.59%<br>57.65%<br>89.41%                                                            |
| Diversity                                                                                                                                                                                                                                                                   |                                                                                       |
| Shannon H (loge)<br>Shannon H (log2)<br>Marqalef D<br>Simpson D<br>Evenness                                                                                                                                                                                                 | 2.322<br>3.350<br>5.337<br>0.150<br>0.072                                             |
|                                                                                                                                                                                                                                                                             |                                                                                       |
| Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer                                                                                                                  | 6<br>4.12%<br>4<br>27.06%<br>71.18%<br>23.82%<br>0.207<br>0.171                       |
| Habit                                                                                                                                                                                                                                                                       |                                                                                       |
| Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent                                                                                                                                                                        | 3<br>3.53%<br>3<br>28.24%<br>14<br>37.94%                                             |
| Characteristics                                                                                                                                                                                                                                                             |                                                                                       |
| Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent                                                                                                                            | 3<br>1.18%<br>2<br>12.35%<br>1<br>0.59%                                               |
| Voltinism                                                                                                                                                                                                                                                                   |                                                                                       |
| Univoltine Richness<br>Semivoltine Richness<br>Multivoltine Percent                                                                                                                                                                                                         | 18<br>2<br>57.94%                                                                     |
| Tolerance                                                                                                                                                                                                                                                                   |                                                                                       |
| Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent CTQa            | 3<br>1.76%<br>2<br>4.71%<br>4.283<br>3<br>0.29%<br>4.378<br>10.59%<br>0.59%<br>71.385 |

#### **Bioassessment Indices**

| BioIndex | Description                                      | Score | Pct    | Rating   |
|----------|--------------------------------------------------|-------|--------|----------|
| BIBI     | B-IBI (Karr et al.)                              | 26    | 52.00% |          |
| MTP      | Montana DEQ Plains (Bukantis 1998)               | 27    | 90.00% | None     |
| MTV      | Montana Revised Valleys/Foothills (Bollman 1998) | 12    | 66.67% | Slight   |
| MTM      | Montana DEQ Mountains (Bukantis 1998)            | 9     | 42.86% | Moderate |



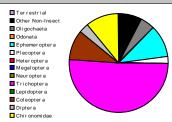
Project ID: CB14LD RAI No.: CB14LD005 Sta. Name: Lewis I-90 Rep 2 Client ID: Lewis I 90 Rep 2 STORET ID

Coll. Date: 8/28/2014

**Latitude:** 47.5620 Longitude: -122.0990

#### Abundance Measures

Sample Count: 457


Sample Abundance: 457.00 100.00% of sample used

Coll. Procedure: Surber

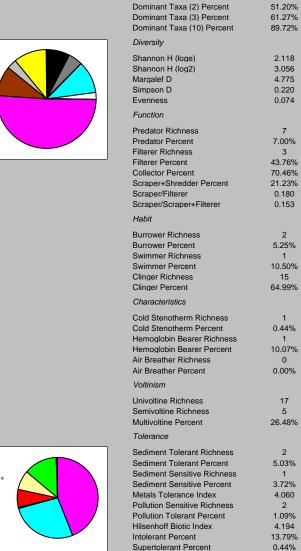
Sample Notes:

#### **Taxonomic Composition**

| Category         | R | Α   | PRA    |
|------------------|---|-----|--------|
| Terrestrial      |   |     |        |
| Other Non-Insect | 7 | 35  | 7.66%  |
| Oligochaeta      | 1 | 22  | 4.81%  |
| Odonata          |   |     |        |
| Ephemeroptera    | 1 | 48  | 10.50% |
| Plecoptera       | 4 | 11  | 2.41%  |
| Heteroptera      |   |     |        |
| Megaloptera      |   |     |        |
| Neuroptera       |   |     |        |
| Trichoptera      | 7 | 231 | 50.55% |
| Lepidoptera      |   |     |        |
| Coleoptera       | 4 | 47  | 10.28% |
| Diptera          | 2 | 12  | 2.63%  |
| Chironomidae     | 4 | 51  | 11.16% |



#### Dominant Taxa


| Category                 | Α   | PRA    |
|--------------------------|-----|--------|
| Hydropsyche              | 186 | 40.70% |
| Baetis tricaudatus       | 48  | 10.50% |
| Polypedilum              | 46  | 10.07% |
| Heterlimnius corpulentus | 37  | 8.10%  |
| Lumbriculidae            | 22  | 4.81%  |
| Acari                    | 19  | 4.16%  |
| Glossosoma               | 17  | 3.72%  |
| Glossosomatidae          | 16  | 3.50%  |
| Simulium                 | 11  | 2.41%  |
| Malenka                  | 8   | 1.75%  |
| Rhyacophila Betteni Gr.  | 6   | 1.31%  |
| Narpus concolor          | 5   | 1.09%  |
| Zaitzevia                | 4   | 0.88%  |
| Crangonyx                | 4   | 0.88%  |
| Nemata                   | 3   | 0.66%  |



■ Xylophage

#### **Functional Composition**

| Category             | R | Α   | PRA    |
|----------------------|---|-----|--------|
| Predator             | 7 | 32  | 7.00%  |
| Parasite             |   |     |        |
| Collector Gatherer   | 8 | 122 | 26.70% |
| Collector Filterer   | 3 | 200 | 43.76% |
| Macrophyte Herbivore |   |     |        |
| Piercer Herbivore    |   |     |        |
| Xylophage            |   |     |        |
| Scraper              | 3 | 36  | 7.88%  |
| Shredder             | 7 | 61  | 13.35% |
| Omnivore             | 1 | 3   | 0.66%  |
| Unknown              | 1 | 3   | 0.66%  |
|                      |   |     |        |



CTQa

Metric Values and Scores

Value

30

12

63.46%

57

8

12.47%

4.81%

1.000

0.805

40.70%

Metric

Composition

E Richness P Richness

T Richness

EPT Richness

EPT Percent

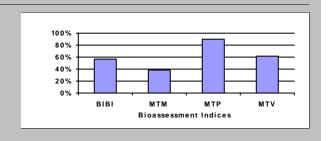
Dominance

All Non-Insect Abundance

All Non-Insect Richness

Baetidae/Ephemeroptera

Dominant Taxon Percent


Hydropsychidae/Trichoptera

All Non-Insect Percent Oligochaeta+Hirudinea Percent

Taxa Richness

#### **Bioassessment Indices**

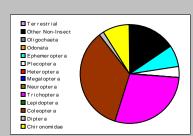
| BioIndex | Description                                      | Score | Pct    | Rating   |
|----------|--------------------------------------------------|-------|--------|----------|
| BIBI     | B-IBI (Karr et al.)                              | 28    | 56.00% |          |
| MTP      | Montana DEQ Plains (Bukantis 1998)               | 27    | 90.00% | None     |
| MTV      | Montana Revised Valleys/Foothills (Bollman 1998) | 11    | 61.11% | Slight   |
| MTM      | Montana DEQ Mountains (Bukantis 1998)            | 8     | 38.10% | Moderate |



72.217

Project ID: CB14LD RAI No.: CB14LD006 Sta. Name: Lewis I-90 Rep 3 Client ID: Lewis I 90 Rep 3 STORET ID

Coll. Date: 8/28/2014 **Latitude:** 47.5620 Longitude: -122.0990


#### Abundance Measures

Sample Abundance: 57.00 100.00% of sample used Coll. Procedure: Surber Sample Notes:

Sample Notes:

#### **Taxonomic Composition**

| Category         | R | Α  | PRA    |
|------------------|---|----|--------|
| Terrestrial      |   |    |        |
| Other Non-Insect | 2 | 9  | 15.79% |
| Oligochaeta      |   |    |        |
| Odonata          |   |    |        |
| Ephemeroptera    | 1 | 4  | 7.02%  |
| Plecoptera       | 2 | 2  | 3.51%  |
| Heteroptera      |   |    |        |
| Megaloptera      |   |    |        |
| Neuroptera       |   |    |        |
| Trichoptera      | 3 | 16 | 28.07% |
| Lepidoptera      |   |    |        |
| Coleoptera       | 2 | 20 | 35.09% |
| Diptera          | 1 | 1  | 1.75%  |
| Chironomidae     | 3 | 5  | 8.77%  |
|                  |   |    |        |



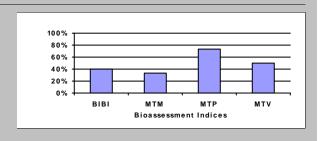
#### Dominant Taxa

| Category                 | Α  | PRA    |
|--------------------------|----|--------|
| Heterlimnius corpulentus | 19 | 33.33% |
| Hydropsyche              | 8  | 14.04% |
| Acari                    | 8  | 14.04% |
| Baetis tricaudatus       | 4  | 7.02%  |
| Polypedilum              | 3  | 5.26%  |
| Glossosoma               | 3  | 5.26%  |
| Dicosmoecus atripes      | 3  | 5.26%  |
| Glossosomatidae          | 2  | 3.51%  |
| Sweltsa                  | 1  | 1.75%  |
| Skwala                   | 1  | 1.75%  |
| Rheotanytarsus           | 1  | 1.75%  |
| Lara                     | 1  | 1.75%  |
| Crangonyx                | 1  | 1.75%  |
| Brillia                  | 1  | 1.75%  |
| Antocha monticola        | 1  | 1.75%  |



#### **Functional Composition**

| Category             | R | Α  | PRA    |
|----------------------|---|----|--------|
| Predator             | 3 | 10 | 17.54% |
| Parasite             |   |    |        |
| Collector Gatherer   | 4 | 25 | 43.86% |
| Collector Filterer   | 2 | 9  | 15.79% |
| Macrophyte Herbivore |   |    |        |
| Piercer Herbivore    |   |    |        |
| Xylophage            |   |    |        |
| Scraper              | 2 | 8  | 14.04% |
| Shredder             | 3 | 5  | 8.77%  |
| Omnivore             |   |    |        |
| Unknown              |   |    |        |




#### Metric Values and Scores

| Metric                                                                                                                                                                                                                                                                                        | Value                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Composition                                                                                                                                                                                                                                                                                   |                                                                                       |
| Composition  Taxa Richness E Richness P Richness T Richness EPT Richness EPT Richness EPT Percent All Non-Insect Abundance All Non-Insect Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera Dominance  Dominant Taxon Percent Dominant Taxa (2) Percent | 14<br>1<br>2<br>3<br>6<br>38.60%<br>9<br>2<br>15.79%<br>0.00%<br>1.000<br>0.500       |
| Dominant Taxa (3) Percent<br>Dominant Taxa (10) Percent                                                                                                                                                                                                                                       | 61.40%<br>91.23%                                                                      |
| Diversity                                                                                                                                                                                                                                                                                     |                                                                                       |
| Shannon H (loge)<br>Shannon H (log2)<br>Margalef D<br>Simpson D<br>Evenness                                                                                                                                                                                                                   | 2.295<br>3.310<br>3.600<br>0.107<br>0.091                                             |
| Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer                                                                                                                                    | 3<br>17.54%<br>2<br>15.79%<br>59.65%<br>22.81%<br>0.889<br>0.471                      |
| Habit                                                                                                                                                                                                                                                                                         |                                                                                       |
| Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent Characteristics                                                                                                                                                                          | 1<br>1.75%<br>1<br>7.02%<br>8<br>64.91%                                               |
| Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent Voltinism                                                                                                                                    | 1<br>5.26%<br>1<br>5.26%<br>1<br>1.75%                                                |
| Univoltine Richness<br>Semivoltine Richness<br>Multivoltine Percent                                                                                                                                                                                                                           | 6<br>3<br>29.82%                                                                      |
| Tolerance                                                                                                                                                                                                                                                                                     |                                                                                       |
| Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent CTQa                              | 1<br>1.75%<br>1<br>5.26%<br>3.692<br>1<br>0.00%<br>3.456<br>17.54%<br>0.00%<br>66.000 |

#### **Bioassessment Indices**

| BioIndex | Description                                      | Score | Pct    | Rating   |
|----------|--------------------------------------------------|-------|--------|----------|
| BIBI     | B-IBI (Karr et al.)                              | 20    | 40.00% |          |
| MTP      | Montana DEQ Plains (Bukantis 1998)               | 22    | 73.33% | Slight   |
| MTV      | Montana Revised Valleys/Foothills (Bollman 1998) | 9     | 50.00% | Moderate |
| MTM      | Montana DEQ Mountains (Bukantis 1998)            | 7     | 33.33% | Moderate |



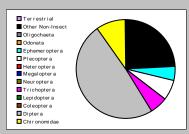
Project ID: CB14LD RAI No.: CB14LD007 Sta. Name: Kelsey Peltzer Rep 1 Client ID: Kelsey Peltzer 1A-E

STORET ID

Coll. Date: 8/29/2014

**Latitude:** 47.6220 Longitude: -122.1460

#### Abundance Measures


Sample Count:

Sample Abundance: 5,510.00 10.00% of sample used Coll. Procedure: Surber

Sample Notes:

#### **Taxonomic Composition**

| Category         | R | Α   | PRA    |
|------------------|---|-----|--------|
| Terrestrial      |   |     |        |
| Other Non-Insect | 5 | 131 | 23.77% |
| Oligochaeta      | 2 | 4   | 0.73%  |
| Odonata          |   |     |        |
| Ephemeroptera    | 1 | 24  | 4.36%  |
| Plecoptera       | 2 | 37  | 6.72%  |
| Heteroptera      |   |     |        |
| Megaloptera      |   |     |        |
| Neuroptera       |   |     |        |
| Trichoptera      | 2 | 30  | 5.44%  |
| Lepidoptera      |   |     |        |
| Coleoptera       |   |     |        |
| Diptera          | 4 | 272 | 49.36% |
| Chironomidae     | 7 | 53  | 9.62%  |



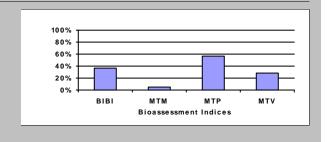
#### Dominant Taxa

| Category                       | Α   | PRA    |
|--------------------------------|-----|--------|
| Simulium                       | 267 | 48.46% |
| Crangonyx                      | 74  | 13.43% |
| Caecidotea                     | 38  | 6.90%  |
| Malenka                        | 36  | 6.53%  |
| Eukiefferiella Claripennis Gr. | 32  | 5.81%  |
| Parapsyche                     | 27  | 4.90%  |
| Baetis tricaudatus             | 24  | 4.36%  |
| Turbellaria                    | 11  | 2.00%  |
| Parametriocnemus               | 6   | 1.09%  |
| Nemata                         | 6   | 1.09%  |
| Micropsectra                   | 6   | 1.09%  |
| Tvetenia Bavarica Gr.          | 5   | 0.91%  |
| Lumbriculidae                  | 3   | 0.54%  |
| Dicranota                      | 3   | 0.54%  |
| Hydropsychidae                 | 2   | 0.36%  |



#### **Functional Composition**

| Category             | R  | Α   | PRA    |
|----------------------|----|-----|--------|
| Predator             | 8  | 47  | 8.53%  |
| Parasite             |    |     |        |
| Collector Gatherer   | 10 | 191 | 34.66% |
| Collector Filterer   | 2  | 270 | 49.00% |
| Macrophyte Herbivore |    |     |        |
| Piercer Herbivore    |    |     |        |
| Xylophage            |    |     |        |
| Scraper              |    |     |        |
| Shredder             | 2  | 37  | 6.72%  |
| Omnivore             |    |     |        |
| Unknown              | 1  | 6   | 1.09%  |




#### Metric Values and Scores

| Metric                                                                                                                                                                                                                                                           | Value                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Composition                                                                                                                                                                                                                                                      |                                                                                        |
| Taxa Richness E Richness P Richness T Richness EPT Richness EPT Percent All Non-Insect Abundance All Non-Insect Richness All Non-Insect Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera Dominance                        | 23<br>1<br>2<br>2<br>5<br>16.52%<br>135<br>7<br>24.50%<br>0.73%<br>1.000<br>0.967      |
| Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent Diversity                                                                                                                                                  | 48.46%<br>61.89%<br>68.78%<br>94.56%                                                   |
| Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness Function                                                                                                                                                                                         | 1.956<br>2.822<br>3.528<br>0.243<br>0.083                                              |
| Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer                                                                                                       | 8<br>8.53%<br>2<br>49.00%<br>83.67%<br>6.72%<br>0.000<br>0.000                         |
| Habit Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent Characteristics                                                                                                                                       | 2<br>0.73%<br>1<br>4.36%<br>6<br>60.80%                                                |
| Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent Voltinism                                                                                                       | 0<br>0.00%<br>1<br>0.54%                                                               |
| Univoltine Richness Semivoltine Richness Multivoltine Percent Tolerance                                                                                                                                                                                          | 10<br>1<br>16.33%                                                                      |
| Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent CTQa | 2<br>1.09%<br>0<br>0.00%<br>4.267<br>0<br>6.90%<br>5.394<br>11.80%<br>12.89%<br>92.368 |

#### **Bioassessment Indices**

| BioIndex | Description                                      | Score | Pct    | Rating   |
|----------|--------------------------------------------------|-------|--------|----------|
| BIBI     | B-IBI (Karr et al.)                              | 18    | 36.00% |          |
| MTP      | Montana DEQ Plains (Bukantis 1998)               | 17    | 56.67% | Slight   |
| MTV      | Montana Revised Valleys/Foothills (Bollman 1998) | 5     | 27.78% | Moderate |
| MTM      | Montana DEQ Mountains (Bukantis 1998)            | 1     | 4.76%  | Severe   |



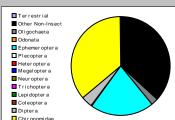
Project ID: CB14LD RAI No.: CB14LD008 Sta. Name: Kelsey Farm Client ID: Kelsey Farm 1-6 STORET ID

Coll. Date: 9/2/2014

**Latitude:** 47.6050 Longitude: -122.1620

#### Abundance Measures

Sample Count:


Sample Abundance: 16,920.00 3.33% of sample used

Coll. Procedure: Surber

Sample Notes:

#### **Taxonomic Composition**

| Category         | R  | Α   | PRA    |
|------------------|----|-----|--------|
| Terrestrial      |    |     |        |
| Other Non-Insect | 5  | 207 | 36.70% |
| Oligochaeta      | 2  | 14  | 2.48%  |
| Odonata          |    |     |        |
| Ephemeroptera    | 1  | 116 | 20.57% |
| Plecoptera       | 1  | 1   | 0.18%  |
| Heteroptera      |    |     |        |
| Megaloptera      |    |     |        |
| Neuroptera       |    |     |        |
| Trichoptera      |    |     |        |
| Lepidoptera      |    |     |        |
| Coleoptera       | 1  | 1   | 0.18%  |
| Diptera          | 2  | 20  | 3.55%  |
| Chironomidae     | 13 | 205 | 36.35% |



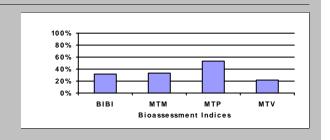
#### Dominant Taxa

| Category                        | Α   | PRA    |
|---------------------------------|-----|--------|
| Potamopyrgus antipodarum        | 165 | 29.26% |
| Rheotanytarsus                  | 145 | 25.71% |
| Baetis tricaudatus              | 116 | 20.57% |
| Turbellaria                     | 23  | 4.08%  |
| Eukiefferiella Pseudomontana Gr | 22  | 3.90%  |
| Simulium                        | 17  | 3.01%  |
| Crangonyx                       | 16  | 2.84%  |
| Tvetenia Bavarica Gr.           | 14  | 2.48%  |
| Lumbriculidae                   | 13  | 2.30%  |
| Orthocladius                    | 4   | 0.71%  |
| Parametriocnemus                | 3   | 0.53%  |
| Micropsectra                    | 3   | 0.53%  |
| Eukiefferiella Claripennis Gr.  | 3   | 0.53%  |
| Antocha monticola               | 3   | 0.53%  |
| Caecidotea                      | 2   | 0.35%  |



#### **Functional Composition**

| Category             | R  | Α   | PRA    |
|----------------------|----|-----|--------|
| Predator             | 3  | 25  | 4.43%  |
| Parasite             |    |     |        |
| Collector Gatherer   | 16 | 209 | 37.06% |
| Collector Filterer   | 2  | 162 | 28.72% |
| Macrophyte Herbivore |    |     |        |
| Piercer Herbivore    |    |     |        |
| Xylophage            |    |     |        |
| Scraper              | 2  | 166 | 29.43% |
| Shredder             | 2  | 2   | 0.35%  |
| Omnivore             |    |     |        |
| Unknown              |    |     |        |




#### Metric Values and Scores

|                                                                                                                                                                                                                                                                  | _                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Metric                                                                                                                                                                                                                                                           | Value                                                                                 |
| Composition                                                                                                                                                                                                                                                      |                                                                                       |
| Taxa Richness E Richness P Richness T Richness EPT Richness EPT Percent All Non-Insect Abundance All Non-Insect Richness All Non-Insect Percent Oligochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera                                  | 25<br>1<br>1<br>0<br>2<br>20.74%<br>221<br>7<br>39.18%<br>2.48%<br>1.000<br>0.000     |
| Dominance                                                                                                                                                                                                                                                        |                                                                                       |
| Dominant Taxon Percent Dominant Taxa (2) Percent Dominant Taxa (3) Percent Dominant Taxa (10) Percent                                                                                                                                                            | 29.26%<br>54.96%<br>75.53%<br>94.86%                                                  |
| Diversity                                                                                                                                                                                                                                                        |                                                                                       |
| Shannon H (loge) Shannon H (log2) Margalef D Simpson D Evenness Function                                                                                                                                                                                         | 2.005<br>2.892<br>3.820<br>0.197<br>0.088                                             |
|                                                                                                                                                                                                                                                                  |                                                                                       |
| Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer                                                                                                       | 3<br>4.43%<br>2<br>28.72%<br>65.78%<br>29.79%<br>1.025<br>0.506                       |
| Habit                                                                                                                                                                                                                                                            |                                                                                       |
| Burrower Richness<br>Burrower Percent<br>Swimmer Richness<br>Swimmer Percent<br>Clinger Richness<br>Clinger Percent                                                                                                                                              | 1<br>2.48%<br>1<br>20.57%<br>6<br>29.79%                                              |
| Characteristics                                                                                                                                                                                                                                                  |                                                                                       |
| Cold Stenotherm Richness<br>Cold Stenotherm Percent<br>Hemoglobin Bearer Richness<br>Hemoglobin Bearer Percent                                                                                                                                                   | 0<br>0.00%                                                                            |
| Air Breather Richness Air Breather Percent  Voltinism                                                                                                                                                                                                            | 1<br>0.53%                                                                            |
| Univoltine Richness                                                                                                                                                                                                                                              | 7                                                                                     |
| Semivoltine Richness Multivoltine Percent                                                                                                                                                                                                                        | 1<br>61.17%                                                                           |
| Tolerance                                                                                                                                                                                                                                                        |                                                                                       |
| Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent CTQa | 2<br>2.84%<br>0<br>0.00%<br>3.018<br>0<br>0.89%<br>6.092<br>0.18%<br>34.75%<br>97.684 |
|                                                                                                                                                                                                                                                                  |                                                                                       |

#### **Bioassessment Indices**

| BioIndex | Description                                      | Score | Pct    | Rating   |
|----------|--------------------------------------------------|-------|--------|----------|
| BIBI     | B-IBI (Karr et al.)                              | 16    | 32.00% |          |
| MTP      | Montana DEQ Plains (Bukantis 1998)               | 16    | 53.33% | Moderate |
| MTV      | Montana Revised Valleys/Foothills (Bollman 1998) | 4     | 22.22% | Moderate |
| MTM      | Montana DEQ Mountains (Bukantis 1998)            | 7     | 33.33% | Moderate |



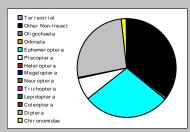
Project ID: CB14LD RAI No.: CB14LD009 Sta. Name: Sunset SE 30th Client ID: Sunset SE 30th Rep 1A-D

STORET ID

Coll. Date: 8/21/2014

**Latitude:** 47.5851 Longitude: -122.1644

#### Abundance Measures


Sample Count:

Sample Abundance: 2,352.86 23.33% of sample used Coll. Procedure: Surber

Sample Notes:

#### **Taxonomic Composition**

| Category         | R | Α   | PRA    |
|------------------|---|-----|--------|
| Terrestrial      |   |     |        |
| Other Non-Insect | 4 | 194 | 35.34% |
| Oligochaeta      | 1 | 3   | 0.55%  |
| Odonata          |   |     |        |
| Ephemeroptera    | 1 | 155 | 28.23% |
| Plecoptera       | 1 | 40  | 7.29%  |
| Heteroptera      |   |     |        |
| Megaloptera      |   |     |        |
| Neuroptera       |   |     |        |
| Trichoptera      | 1 | 2   | 0.36%  |
| Lepidoptera      |   |     |        |
| Coleoptera       |   |     |        |
| Diptera          | 2 | 146 | 26.59% |
| Chironomidae     | 4 | 9   | 1.64%  |



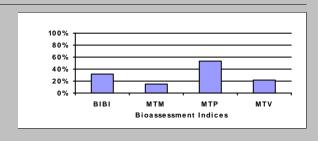
#### Dominant Taxa

| Category                       | Α   | PRA    |
|--------------------------------|-----|--------|
| Baetis tricaudatus             | 155 | 28.23% |
| Simulium                       | 145 | 26.41% |
| Crangonyx                      | 135 | 24.59% |
| Turbellaria                    | 56  | 10.20% |
| Malenka                        | 40  | 7.29%  |
| Eukiefferiella Claripennis Gr. | 4   | 0.73%  |
| Lumbriculidae                  | 3   | 0.55%  |
| Phaenopsectra                  | 2   | 0.36%  |
| Lepidostoma                    | 2   | 0.36%  |
| Cricotopus (Cricotopus)        | 2   | 0.36%  |
| Acari                          | 2   | 0.36%  |
| Tvetenia tshernovskii          | 1   | 0.18%  |
| Nemata                         | 1   | 0.18%  |
| Dicranota                      | 1   | 0.18%  |



#### **Functional Composition**

| Category             | R | Α   | PRA    |
|----------------------|---|-----|--------|
| Predator             | 3 | 59  | 10.75% |
| Parasite             |   |     |        |
| Collector Gatherer   | 5 | 298 | 54.28% |
| Collector Filterer   | 1 | 145 | 26.41% |
| Macrophyte Herbivore |   |     |        |
| Piercer Herbivore    |   |     |        |
| Xylophage            |   |     |        |
| Scraper              | 1 | 2   | 0.36%  |
| Shredder             | 3 | 44  | 8.01%  |
| Omnivore             |   |     |        |
| Unknown              | 1 | 1   | 0.18%  |
|                      |   |     |        |




#### Metric Values and Scores

| Metric                                                                                                                                                                                                                                                                                                | Value                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Composition                                                                                                                                                                                                                                                                                           |                                                                                      |
| Taxa Richness E Richness P Richness P Richness T Richness EPT Richness EPT Percent All Non-Insect Abundance All Non-Insect Richness All Non-Insect Percent Oliqochaeta+Hirudinea Percent Baetidae/Ephemeroptera Hydropsychidae/Trichoptera Dominance Dominant Taxon Percent Dominant Taxa (2) Percent | 14<br>1<br>1<br>1<br>3<br>35.88%<br>197<br>5<br>35.88%<br>0.55%<br>1.000<br>0.000    |
| Dominant Taxa (10) Percent                                                                                                                                                                                                                                                                            | 99.09%                                                                               |
| Diversity Shannon H (loge) Shannon H (log2) Marqalef D Simpson D Evenness Function                                                                                                                                                                                                                    | 1.659<br>2.393<br>2.071<br>0.223<br>0.120                                            |
| Predator Richness Predator Percent Filterer Richness Filterer Percent Collector Percent Scraper+Shredder Percent Scraper/Filterer Scraper/Scraper+Filterer                                                                                                                                            | 3<br>10.75%<br>1<br>26.41%<br>80.69%<br>8.38%<br>0.014<br>0.014                      |
| Habit                                                                                                                                                                                                                                                                                                 |                                                                                      |
| Burrower Richness Burrower Percent Swimmer Richness Swimmer Percent Clinger Richness Clinger Percent                                                                                                                                                                                                  | 1<br>0.55%<br>1<br>28.23%<br>4<br>34.43%                                             |
| Characteristics                                                                                                                                                                                                                                                                                       |                                                                                      |
| Cold Stenotherm Richness Cold Stenotherm Percent Hemoglobin Bearer Richness Hemoglobin Bearer Percent Air Breather Richness Air Breather Percent                                                                                                                                                      | 0<br>0.00%<br>1<br>0.36%<br>1<br>0.18%                                               |
| Voltinism                                                                                                                                                                                                                                                                                             |                                                                                      |
| Univoltine Richness<br>Semivoltine Richness<br>Multivoltine Percent                                                                                                                                                                                                                                   | 6<br>0<br>40.44%                                                                     |
| Tolerance                                                                                                                                                                                                                                                                                             |                                                                                      |
| Sediment Tolerant Richness Sediment Tolerant Percent Sediment Sensitive Richness Sediment Sensitive Percent Metals Tolerance Index Pollution Sensitive Richness Pollution Tolerant Percent Hilsenhoff Biotic Index Intolerant Percent Supertolerant Percent CTQa                                      | 2<br>0.73%<br>0<br>0.00%<br>4.408<br>0<br>0.00%<br>4.847<br>7.65%<br>0.73%<br>79.800 |

#### **Bioassessment Indices**

| BioIndex | Description                                      | Score | Pct    | Rating   |
|----------|--------------------------------------------------|-------|--------|----------|
| BIBI     | B-IBI (Karr et al.)                              | 16    | 32.00% |          |
| MTP      | Montana DEQ Plains (Bukantis 1998)               | 16    | 53.33% | Moderate |
| MTV      | Montana Revised Valleys/Foothills (Bollman 1998) | 4     | 22.22% | Moderate |
| MTM      | Montana DEQ Mountains (Bukantis 1998)            | 3     | 14.29% | Severe   |

